On the Nonexistence of Simplex Integration Rules for Infinite Integrals

By P. J. Davis and P. Rabinowitz

Abstract. It is shown that there do not exist integration rules of the form
\[\int_0^\infty f(x) \, dx = \sum_{i=1}^n w_i f(x_i) + C \left(f^{(m)}(\xi) \right), \quad 0 < \xi < \infty. \]

Almost all classical integration rules over a finite interval are simplex, that is, they have the form
\[\int_a^b f(x) \, dx = \sum_{i=1}^n w_i f(x_i) + C f^{(k)}(\xi), \quad a < \xi < b, \xi = \xi(f), \]
where \(C \) is a constant depending on the rule and interval, but independent of \(f \), and \(k \) is some integer which is characteristic for the rule. Some special rules, for example Weddle's rule, which are not simplex are multiplex, that is, the error has the form \(\sum_{i=1}^n C f^{(k)}(\xi_i) \). It is the aim of this note to show that there can exist no simplex or multiplex rule for the infinite integral \(\int_0^\infty f(x) \, dx \). Although the Gauss-Laguerre rule
\[\int_0^\infty e^{-x} f(x) \, dx = \sum_{i=1}^n w_i f(x_i) + C \left(e^{-x} f^{(2n)}(\xi) \right) \]
appears to have the form of a simplex rule, this is not so, since we are concerned with unweighted integrals and if we write \(f(x) = e^{-x} e^x f(x) \), we have that
\[\int_0^\infty f(x) \, dx = \sum_{i=1}^n w_i e^{x_i} f(x_i) + C \left(e^{x_i} f^{(2n)}(\xi) \right) \]
which is neither simplex nor multiplex in form.

We now show that it is impossible to have an integration rule of the form
\[Jf \equiv \int_0^\infty f(x) \, dx = \sum_{i=1}^n w_i f(x_i) + C f^{(k)}(\xi), \quad 0 < \xi < \infty, \]
valid for all \(f \in L(0, \infty) \cap C^k(0, \infty) \), or for that matter, one where there are a finite number of terms of the form \(C f^{(k)}(\xi_i) \). The proof is based on the simple fact that, for any \(r > 0 \),
\[\int_0^\infty f(x) \, dx = r \int_0^\infty f(rx) \, dx. \]

Received February 7, 1972.

AMS 1970 subject classifications. Primary 41A55; Secondary 65D30.

Key words and phrases. Numerical integration, infinite interval, simplex rule, integration error.

Copyright © 1972, American Mathematical Society

687
If (1) were true, then (2) would imply that

\[If = r \int_{0}^{\infty} f(rx) \, dx = r \sum_{i=1}^{n} w_{i} f(rx_{i}) + rCf^{(k)}(r\xi) \]

(3)

\[= r \sum_{i=1}^{n} w_{i} f(rx_{i}) + r^{k+1}Cf^{(k)}(\xi), \quad 0 < \xi < \infty, \]

which must hold for all \(f \in L[0, \infty) \cap C^{k}(0, \infty) \) and any real \(r \). If we now choose such a function which is bounded together with its \(k \)th derivative on \([0, \infty)\), say \(f(x) = 1/(1 + x^{2}) \), and let \(r \) approach zero, we see that the right-hand side of (3) approaches zero while the left-hand side has a constant value. This contradiction proves our result.

Brown University
Providence, Rhode Island 02912

Weizmann Institute of Science
Rehovot, Israel