Computation of best monotone approximations

Author:
James T. Lewis

Journal:
Math. Comp. **26** (1972), 737-747

MSC:
Primary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1972-0329199-3

MathSciNet review:
0329199

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A numerical procedure to compute the best uniform approximation to a given continuous function by algebraic polynomials with nonnegative th derivative is presented and analyzed. The method is based on discretization and linear programming. Several numerical experiments are discussed.

**[1]**E. W. Cheney,*Introduction to Approximation Theory*, McGraw-Hill, New York, 1966. MR**36**#5568. MR**0222517 (36:5568)****[2]**G. F. Hadley,*Linear Programming*, Addison-Wesley Series in Industrial Management, Addison-Wesley, Reading, Mass., 1962. MR**24**#B1669. MR**0135622 (24:B1669)****[3]**P. LaFata & J. B. Rosen, ``An interactive display for approximation by linear programming,''*Comm. ACM*, v. 13, 1970, pp. 651-659. MR**42**#2712. MR**0267810 (42:2712)****[4]**J. T. Lewis,*Approximation With Convex Constraints*, Doctoral Thesis, Brown University, Providence, R.I., 1969.**[5]**J. T. Lewis,*Approximation With Convex Constraints*, Technical Report #11, University of Rhode Island, Kingston, R.I., 1970. (Submitted for publication.)**[6]**G. G. Lorentz & K. L. Zeller, ``Gleichmässige Approximation durch monotone Polynome,''*Math. Z.*, v. 109, 1969, pp. 87-91. MR**39**#3189. MR**0241852 (39:3189)****[7]**G. G. Lorentz & K. L. Zeller, ``Monotone approximation by algebraic polynomials,''*Trans. Amer. Math. Soc.*, v. 149, 1970, pp. 1-18. MR**0285843 (44:3060)****[8]**J. R. Rice, ``Approximation with convex constraints,''*J. Soc. Indust. Appl. Math.*, v. 11, 1963, pp. 15-32. MR**28**#2387. MR**0159170 (28:2387)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15

Retrieve articles in all journals with MSC: 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1972-0329199-3

Keywords:
Monotone approximation,
computation of best approximations,
approximation with constraints,
linear programming

Article copyright:
© Copyright 1972
American Mathematical Society