Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

High precision evaluation of the irregular Coulomb wave functions


Authors: A. J. Strecok and J. A. Gregory
Journal: Math. Comp. 26 (1972), 955-961
MSC: Primary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1972-0314239-8
MathSciNet review: 0314239
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This tutorial paper presents practical methods for accurately evaluating irregular Coulomb wave functions. Rational approximations to $ {G_0}(\eta ,\rho )$ and $ {G'_0}(\eta ,\rho )$ are developed along line segments in the $ (\eta ,\rho )$ plane to provide useful initial values for the associated differential equation. These approximations, designed for IBM System 360 Fortran double precision, yield results to at least 13 significant decimal places.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz, ``Asymptotic expansions of Coulomb wave functions,'' Quart. Appl. Math., v. 7, 1949, pp. 75-84. MR 10, 454. MR 0028479 (10:454a)
  • [2] M. Abramowitz & P. Rabinowitz, ``Evaluation of Coulomb wave functions along the transition line,'' Phys. Rev., v. (2) 96, 1954, pp. 77-79. MR 16, 129. MR 0063495 (16:129e)
  • [3] M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, U.S. Government Printing Office, Washington, D.C., 1964, pp. 446, 537-554. MR 29 #4914.
  • [4] L. C. Biedenharn, R. L. Gluckstern, M. H. Hull & G. Breit, ``Coulomb functions for large charges and small velocities,'' Phys. Rev., (2) v. 97, 1955, pp. 542-554. MR 16, 697. MR 0067255 (16:697b)
  • [5] J. Boersma, ``Expansions for Coulomb wave functions,'' Math. Comp., v. 23, 1969, pp. 51-59. MR 38 #6117. MR 0237836 (38:6117)
  • [6] W. J. Cody, W. Fraser & J. F. Hart, ``Rational Chebyshev approximations using linear equations,'' Numer. Math., v. 12, 1968, pp. 242-251. MR 1553964
  • [7] W. Cody & K. Hillstrom, ``Chebyshev approximations for the Coulomb phase shift,'' Math. Comp., v. 24, 1970, pp. 671-677. MR 42 #8661. MR 0273785 (42:8661)
  • [8] A. R. Curtis, Coulomb Wave Functions, Royal Soc. Math. Tables, vol. 11, Cambridge Univ. Press, New York, 1964. MR 29 #4915. MR 0167643 (29:4915)
  • [9] C. E. Froberg, ``Numerical treatment of Coulomb wave functions,'' Rev. Mod. Phy., v. 27, 1955, pp. 399-411. MR 17, 412. MR 0073289 (17:412f)
  • [10] W. Gautschi, ``Algorithm 292--Regular Coulomb wave functions,'' Comm. ACM, v. 9, 1966, pp. 793-795.
  • [11] W. Gautschi, ``Computational aspects of three-term recurrence relations,'' SIAM Rev., v. 9, 1967, pp. 24-82. MR 35 #3927. MR 0213062 (35:3927)
  • [12] J. H. Gunn, ``Algorithm 300--Coulomb wave functions,'' Comm. ACM, v. 10, 1967, pp. 244-245.
  • [13] T. Isacson, ``Asymptotic expansions of Coulomb wave functions on the transition line,'' Nordisk Tidskr. Informationsbehandling (BIT), v. 8, 1968, pp. 243-245.
  • [14] K. S. Kölbig, ``Certification of algorithm 300,'' Comm. ACM, v. 12, 1969, pp. 279-280.
  • [15] K. S. Kölbig, ``Remark on algorithm 300,'' Comm. ACM, v. 12, 1969, p. 692.
  • [16] Y. L. Luke, The Special Functions and Their Approximations. Vol. 1, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969, pp. 115-119, 134, 135, 212. MR 39 #3039.
  • [17] H. F. Lutz & M. D. Karvelis, ``Numerical calculation of Coulomb wave functions for repulsive Coulomb fields,'' Nuclear Phys., v. 43, 1963, pp. 31-44.
  • [18] A. S. Meligy & E. M. El Gazzy, ``On Coulomb wave functions,'' Proc. Cambridge Philos. Soc., v. 59, 1963, pp. 89-94. MR 27 #357. MR 0150356 (27:357)
  • [19] Tables of Coulomb Wave Functions. Vol. 1, Nat. Bur. Standards Appl. Math. Ser., no. 17, U.S. Government Printing Office, Washington, D.C., 1952. MR 13, 988.
  • [20] R. L. Pexton, ``Computer investigation of Coulomb wave functions,'' Math. Comp., v. 24, 1970, pp. 409-411. MR 42 #7176. MR 0272295 (42:7176)
  • [21] M. E. Sherry & S. Fulda, ``Calculation of gamma functions to high accuracy,'' MTAC, v. 13, 1959, pp. 314-315. MR 21 #7603. MR 0108891 (21:7603)
  • [22] I. A. Stegun & M. Abramowitz, ``Generation of Coulomb wave functions by means of recurrence relations,'' Phys. Rev., (2) v. 98, 1955, pp. 1851-1852. MR 16, 1155. MR 0070259 (16:1155c)
  • [23] A. Tubis, Table of Nonrelativistic Coulomb Wave Functions, LA-2150, Los Alamos, New Mexico, 1958, pp. 1-277.
  • [24] H. Werner, J. Stoer & W. Bommas, ``Rational Chebyshev approximation,'' Numer. Math., v. 10, 1967, pp. 289-306. MR 1553955
  • [25] B. Zondek, ``The values of $ \Gamma (1/3)$ and $ \Gamma (2/3)$ and their logarithms accurate to 28 decimals,'' MTAC, v. 9, 1955, pp. 24-25. MR 16, 861. MR 0068302 (16:861c)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1972-0314239-8
Keywords: Coulomb wave functions, differential equations, rational approximations
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society