Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Quadratic fields with four invariants divisible by $ 3$

Authors: Daniel Shanks and Richard Serafin
Journal: Math. Comp. 27 (1973), 183-187
MSC: Primary 12A25; Secondary 12A50
Corrigendum: Math. Comp. 27 (1973), 1012.
Corrigendum: Math. Comp. 27 (1973), 1011-1012.
MathSciNet review: 0330097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Imaginary quadratic fields are developed that have four invariants divisible by 3. Their associated real fields are found to differ in one significant respect: one case has two elementary generators and the other has only one.

References [Enhancements On Off] (What's this?)

  • [1] A. Scholz, "Über die Beziehung der Klassenzahlen quadratischer Körper zueinander," Crelle's J., v. 166, 1932, pp. 201-203.
  • [2] A. Scholz & Olga Taussky, "Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluss auf den Klassenkörperturm," Crelle's J., v. 171, 1934, pp. 19-41.
  • [3] Daniel Shanks, "New types of quadratic fields having three invariants divisible by 3," J. Number Theory. (To appear.) MR 0313220 (47:1775)
  • [4] Maurice Craig, Irregular Discriminants, Dissertation, University of Michigan, Ann Arbor, Mich., 1972.
  • [5] Daniel Shanks & Peter Weinberger, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory," Sierpiński Memorial Volume, Acta Arith., 1972, pp. 71-87. MR 0309899 (46:9003)
  • [6] E. S. Golod & I. R. Šafarevič, "On class field towers," Izv. Akad. Nauk SSSR, v. 28, 1964, pp. 261-272. (Russian) MR 0161852 (28:5056)
  • [7] Peter Roquette, "On class field towers," in Algebraic Number Theory, Thompson, Washington, D.C., 1967. MR 0218331 (36:1418)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A25, 12A50

Retrieve articles in all journals with MSC: 12A25, 12A50

Additional Information

Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society