A probabilistic approach to a differentialdifference equation arising in analytic number theory
Author:
JeanMarieFrançois Chamayou
Journal:
Math. Comp. 27 (1973), 197203
MSC:
Primary 65C05; Secondary 10K10
MathSciNet review:
0336952
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The differentialdifference equation can be solved by the MonteCarlo method, for the initial condition , where the represent the probability density of a random variable: where the are independent and uniformly distributed on (0, 1).
 [1]
N.
G. de Bruijn, On the number of positive integers ≤𝑥 and
free of prime factors >𝑦, Nederl. Acad. Wetensch. Proc.
Ser. A. 54 (1951), 50–60. MR 0046375
(13,724e)
 [2]
N.
G. de Bruijn, The asymptotic behaviour of a function occurring in
the theory of primes, J. Indian Math. Soc. (N.S.) 15
(1951), 25–32. MR 0043838
(13,326f)
 [3]
Karl
K. Norton, Numbers with small prime factors, and the least
𝑘th power nonresidue, Memoirs of the American Mathematical
Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR 0286739
(44 #3948)
 [4]
K. Dickman, "On the frequency of numbers containing prime factors of a certain relative magnitude," Ark. Mat. Astr. Fys., v. 22, A, 1930, pp. 114.
 [5]
R.
Bellman and B.
Kotkin, On the numerical solution of a
differentialdifference equation arising in analytic number
theory, Math. Comp. 16 (1962), 473–475. MR 0148248
(26 #5756), http://dx.doi.org/10.1090/S00255718196201482482
 [6]
J.
van de Lune and E.
Wattel, On the numerical solution of a
differentialdifference equation arising in analytic number
theory, Math. Comp. 23 (1969), 417–421. MR 0247789
(40 #1050), http://dx.doi.org/10.1090/S00255718196902477893
 [7]
M.
P. van OuwerkerkDijkers and J.
Nuis, On the asymptotic behavior of the solution of a
differentialdifference equation arising in number theory, Math.
Centrum Amsterdam Afd. Toegepaste Wisk. Rep. TN 50 (1968),
9. MR
0255945 (41 #605)
 [8]
L.
I. Pál and G.
Németh, A statistical theory of lattice damage in solids
irradiated by highenergy particles, Nuovo Cimento (10)
12 (1959), 293–309 (English, with Italian summary).
MR
0108918 (21 #7630)
 [9]
L.
Lewin, Dilogarithms and associated functions, Foreword by J.
C. P. Miller, Macdonald, London, 1958. MR 0105524
(21 #4264)
 [10]
J.
H. Ahlberg, E.
N. Nilson, and J.
L. Walsh, The theory of splines and their applications,
Academic Press, New YorkLondon, 1967. MR 0239327
(39 #684)
 [11]
Y. L. Luke, The Special Functions and Their Approximations. Vol. 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 #2909.
 [12]
Edward
W. Ng, C.
J. Devine, and R.
F. Tooper, Chebyshev polynomial expansion of
BoseEinstein functions of orders 1 to 10, Math. Comp. 23 (1969), 639–643. MR 0247739
(40 #1002a), http://dx.doi.org/10.1090/S0025571819690247739X
 [13]
K. S. Kölbig, "Algorithm 327: Dilogarithm," Comm. Assoc. Comput. Mach., v. 11, 1968, pp. 270271.
 [14]
V.
Boffi and R.
Scozzafava, Sull’equazione funzionale lineare
𝑓′(𝑥)=𝐴(𝑥)𝑓(𝑥1),
Rend. Mat. e Appl. (5) 25 (1966), 402–410 (Italian).
MR
0218702 (36 #1786)
 [15]
H.
Davenport and P.
Erdös, The distribution of quadratic and higher residues,
Publ. Math. Debrecen 2 (1952), 252–265. MR 0055368
(14,1063h)
 [1]
 N. G. De Bruijn,"On the number of positive integers and free of prime factors ," Nederl. Akad. Wetensch. Proc. Ser. A, v. 54 = Indag. Math., v. 13, 1951, pp. 5060. MR 13, 724. MR 0046375 (13:724e)
 [2]
 N. G. De Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes," J. Indian Math. Soc., v. 15, 1951, pp. 2532. MR 13, 326. MR 0043838 (13:326f)
 [3]
 K. K. Norton, "Numbers with small prime factors and least Kth power non residue," Mem. Amer. Math. Soc., No. 106, 1971. MR 0286739 (44:3948)
 [4]
 K. Dickman, "On the frequency of numbers containing prime factors of a certain relative magnitude," Ark. Mat. Astr. Fys., v. 22, A, 1930, pp. 114.
 [5]
 R. Bellman & B. Kotkin, "On the numerical solution of a differentialdifference equation arising in analytic number theory," Math. Comp., v. 16, 1962, pp. 473475. MR 26 #5756. MR 0148248 (26:5756)
 [6]
 J. van de Lune & E. Wattel, "On the numerical solution of a differentialdifference equation arising in analytic number theory," Math. Comp., v. 23, 1969, pp. 417421. MR 40 #1050. MR 0247789 (40:1050)
 [7]
 M. P. van OuwerkerkDijkers & J. Nuis, "On the asymptotic behaviour of the solution of a differentialdifference equation arising in number theory," Math. Centrum Amsterdam Afd. Toegepaste Wisk. Rep. TN, v. 50, 1968, 9 pp. MR 41 #605. MR 0255945 (41:605)
 [8]
 L. I. Pál & G. Németh, "A statistical theory of lattice damage in solids irradiated by highenergy particles," Nuovo Cimento (10), v. 12, 1959, pp. 293309. MR 21 #7630. MR 0108918 (21:7630)
 [9]
 L. Lewin, Dilogarithms and Associated Functions, MacDonald, LONDON, 1958. MR 21 #4264. MR 0105524 (21:4264)
 [10]
 J. H. Ahlberg, E. N. Nilson & J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967. MR 39 #684. MR 0239327 (39:684)
 [11]
 Y. L. Luke, The Special Functions and Their Approximations. Vol. 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 #2909.
 [12]
 E. W. Ng, C. J. Devine & R. F. Tooper, "Chebyshev polynomial expansion of BoseEinstein functions of orders 1 to 10," Math. Comp., v. 23, 1969, pp. 639643. MR 40 # 1002a. MR 0247739 (40:1002a)
 [13]
 K. S. Kölbig, "Algorithm 327: Dilogarithm," Comm. Assoc. Comput. Mach., v. 11, 1968, pp. 270271.
 [14]
 V. Boffi & R. Scozzafava, "Sull' equazione funzionale lineare ," Rend. Mat. e Appl. (5), v. 25, 1966, pp. 402410. MR 36 #1786. MR 0218702 (36:1786)
 [15]
 H. Davenport & P. Erdös, "The distribution of quadratic and higher residues," Publ. Math. Debrecen, v. 2, 195152, pp. 252265. MR 0055368 (14:1063h)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65C05,
10K10
Retrieve articles in all journals
with MSC:
65C05,
10K10
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819730336952X
PII:
S 00255718(1973)0336952X
Keywords:
Differentialdifference equation,
MonteCarlo method,
stochastic processes,
elementary prime number theory,
explicit machine computations
Article copyright:
© Copyright 1973
American Mathematical Society
