A probabilistic approach to a differential-difference equation arising in analytic number theory

Author:
Jean-Marie-François Chamayou

Journal:
Math. Comp. **27** (1973), 197-203

MSC:
Primary 65C05; Secondary 10K10

DOI:
https://doi.org/10.1090/S0025-5718-1973-0336952-X

MathSciNet review:
0336952

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The differential-difference equation

**[1]**N. G. De Bruijn,"On the number of positive integers and free of prime factors ,"*Nederl. Akad. Wetensch. Proc. Ser.*A, v. 54 =*Indag. Math.*, v. 13, 1951, pp. 50-60. MR**13**, 724. MR**0046375 (13:724e)****[2]**N. G. De Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes,"*J. Indian Math. Soc.*, v. 15, 1951, pp. 25-32. MR**13**, 326. MR**0043838 (13:326f)****[3]**K. K. Norton, "Numbers with small prime factors and least*K*th power non residue,"*Mem. Amer. Math. Soc.*, No. 106, 1971. MR**0286739 (44:3948)****[4]**K. Dickman, "On the frequency of numbers containing prime factors of a certain relative magnitude,"*Ark. Mat. Astr. Fys.*, v. 22, A, 1930, pp. 1-14.**[5]**R. Bellman & B. Kotkin, "On the numerical solution of a differential-difference equation arising in analytic number theory,"*Math. Comp.*, v. 16, 1962, pp. 473-475. MR**26**#5756. MR**0148248 (26:5756)****[6]**J. van de Lune & E. Wattel, "On the numerical solution of a differential-difference equation arising in analytic number theory,"*Math. Comp.*, v. 23, 1969, pp. 417-421. MR**40**#1050. MR**0247789 (40:1050)****[7]**M. P. van Ouwerkerk-Dijkers & J. Nuis, "On the asymptotic behaviour of the solution of a differential-difference equation arising in number theory,"*Math. Centrum Amsterdam Afd. Toegepaste Wisk. Rep. TN*, v. 50, 1968, 9 pp. MR**41**#605. MR**0255945 (41:605)****[8]**L. I. Pál & G. Németh, "A statistical theory of lattice damage in solids irradiated by high-energy particles,"*Nuovo Cimento*(10), v. 12, 1959, pp. 293-309. MR**21**#7630. MR**0108918 (21:7630)****[9]**L. Lewin,*Dilogarithms and Associated Functions*, MacDonald, LONDON, 1958. MR**21**#4264. MR**0105524 (21:4264)****[10]**J. H. Ahlberg, E. N. Nilson & J. L. Walsh,*The Theory of Splines and Their Applications*, Academic Press, New York, 1967. MR**39**#684. MR**0239327 (39:684)****[11]**Y. L. Luke,*The Special Functions and Their Approximations*. Vol. 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR**40**#2909.**[12]**E. W. Ng, C. J. Devine & R. F. Tooper, "Chebyshev polynomial expansion of Bose-Einstein functions of orders 1 to 10,"*Math. Comp.*, v. 23, 1969, pp. 639-643. MR**40**# 1002a. MR**0247739 (40:1002a)****[13]**K. S. Kölbig, "Algorithm 327: Dilogarithm,"*Comm. Assoc. Comput. Mach.*, v. 11, 1968, pp. 270-271.**[14]**V. Boffi & R. Scozzafava, "Sull' equazione funzionale lineare ,"*Rend. Mat. e Appl.*(5), v. 25, 1966, pp. 402-410. MR**36**#1786. MR**0218702 (36:1786)****[15]**H. Davenport & P. Erdös, "The distribution of quadratic and higher residues,"*Publ. Math. Debrecen*, v. 2, 1951-52, pp. 252-265. MR**0055368 (14:1063h)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65C05,
10K10

Retrieve articles in all journals with MSC: 65C05, 10K10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0336952-X

Keywords:
Differential-difference equation,
Monte-Carlo method,
stochastic processes,
elementary prime number theory,
explicit machine computations

Article copyright:
© Copyright 1973
American Mathematical Society