A catalogue of combinatorial geometries
Authors:
John E. Blackburn, Henry H. Crapo and Denis A. Higgs
Journal:
Math. Comp. 27 (1973), 155166
MSC:
Primary 05B35
MathSciNet review:
0419270
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We include in the microfiche section of this issue a catalogue of all the different geometric configurations which may be constructed from n points, , by specifying their points, lines, planes, . . . , colines, copoints, their flats of each rank. It suffices to list the copoints of each combinatorial geometry G, because the colines of G are the copoints of a geometry earlier in the list, which may be located by deleting one component of the designator of G.
 [1]
Henry
H. Crapo, Singleelement extensions of matroids, J. Res. Nat.
Bur. Standards Sect. B 69B (1965), 55–65. MR 0190045
(32 #7461)
 [2]
Henry
H. Crapo and GianCarlo
Rota, On the foundations of combinatorial theory: Combinatorial
geometries, Preliminary edition, The M.I.T. Press, Cambridge,
Mass.London, 1970. MR 0290980
(45 #74)
 [3]
Henry
H. Crapo, The Tutte polynomial, Aequationes Math.
3 (1969), 211–229. MR 0262095
(41 #6705)
 [4]
Jean
Doyen, Sur le nombre d’espaces linéaires non
isomorphes de 𝑛\ points, Bull. Soc. Math. Belg.
19 (1967), 421–437 (French). MR 0249316
(40 #2562)
 [5]
D. A. Higgs, "Matroids on 6, 7 elements," 1966. (Unpublished.)
 [6]
A.
W. Ingleton, A note on independence functions and rank, J.
London Math. Soc. 34 (1959), 49–56. MR 0101848
(21 #655)
 [7]
A.
W. Ingleton, Representation of matroids, Combinatorial
Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic
Press, London, 1971, pp. 149–167. MR 0278974
(43 #4700)
 [8]
M.
J. Piff and D.
J. A. Welsh, The number of combinatorial geometries, Bull.
London Math. Soc. 3 (1971), 55–56. MR 0282867
(44 #101)
 [9]
Dominic
J. A. Welsh, A bound for the number of matroids, J.
Combinatorial Theory 6 (1969), 313–316. MR 0238723
(39 #87)
 [1]
 H. H. Crapo, "Singleelement extensions of matroids," J. Res. Nat. Bur. Standards Sect. B, v. 69B, 1965, pp. 5565. MR 32 #7461. MR 0190045 (32:7461)
 [2]
 H. H. Crapo & G.C. Rota, On the Foundations of Combinational Theory: Combinatorial Geometries, M.I.T. Press, Cambridge, Mass., 1970. (Preliminary edition.) MR 0290980 (45:74)
 [3]
 H. H. Crapo, "The Tutte polynomial," Aequationes Math., v. 3, 1969, pp. 211229. MR 41 #6705. MR 0262095 (41:6705)
 [4]
 J. Doyen, "Sur le nombre d'espaces linéaires non isomorphes de n points," Bull. Soc. Math. Belg., v. 19, 1967, pp. 421437. MR 40 #2562. MR 0249316 (40:2562)
 [5]
 D. A. Higgs, "Matroids on 6, 7 elements," 1966. (Unpublished.)
 [6]
 A. W. Ingleton, "A note on independence functions and rank," J. London Math. Soc., v. 34, 1959, pp. 4956. MR 21 #655. MR 0101848 (21:655)
 [7]
 A. W. Ingleton, "Representation of matroids," Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 149167. MR 43 #4700. MR 0278974 (43:4700)
 [8]
 M. J. Piff & D. J. A. Welsh, On the Number of Combinatorial Geometries, Mathematical Institute, University of Oxford, 1971. (Preprint.) MR 0282867 (44:101)
 [9]
 D. J. A. Welsh, "A bound for the number of matroids," J. Combinatorial Theory, v. 6, 1969, pp. 313316. MR 39 #87. MR 0238723 (39:87)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
05B35
Retrieve articles in all journals
with MSC:
05B35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197304192700
PII:
S 00255718(1973)04192700
Keywords:
Combinatorial geometries,
geometric lattice,
configuration,
catalogue of geometries,
modular filter,
Tutte polynomial
Article copyright:
© Copyright 1973
American Mathematical Society
