A catalogue of combinatorial geometries

Authors:
John E. Blackburn, Henry H. Crapo and Denis A. Higgs

Journal:
Math. Comp. **27** (1973), 155-166

MSC:
Primary 05B35

DOI:
https://doi.org/10.1090/S0025-5718-1973-0419270-0

MathSciNet review:
0419270

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We include in the microfiche section of this issue a catalogue of all the different geometric configurations which may be constructed from *n* points, , by specifying their points, lines, planes, . . . , colines, copoints, their *flats* of each rank. It suffices to list the copoints of each combinatorial geometry *G*, because the colines of *G* are the copoints of a geometry earlier in the list, which may be located by deleting one component of the designator of *G*.

**[1]**Henry H. Crapo,*Single-element extensions of matroids*, J. Res. Nat. Bur. Standards Sect. B**69B**(1965), 55–65. MR**0190045****[2]**Henry H. Crapo and Gian-Carlo Rota,*On the foundations of combinatorial theory: Combinatorial geometries*, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR**0290980****[3]**Henry H. Crapo,*The Tutte polynomial*, Aequationes Math.**3**(1969), 211–229. MR**0262095**, https://doi.org/10.1007/BF01817442**[4]**Jean Doyen,*Sur le nombre d’espaces linéaires non isomorphes de 𝑛 points*, Bull. Soc. Math. Belg.**19**(1967), 421–437 (French). MR**0249316****[5]**D. A. Higgs, "Matroids on 6, 7 elements," 1966. (Unpublished.)**[6]**A. W. Ingleton,*A note on independence functions and rank*, J. London Math. Soc.**34**(1959), 49–56. MR**0101848**, https://doi.org/10.1112/jlms/s1-34.1.49**[7]**A. W. Ingleton,*Representation of matroids*, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 149–167. MR**0278974****[8]**M. J. Piff and D. J. A. Welsh,*The number of combinatorial geometries*, Bull. London Math. Soc.**3**(1971), 55–56. MR**0282867**, https://doi.org/10.1112/blms/3.1.55**[9]**Dominic J. A. Welsh,*A bound for the number of matroids*, J. Combinatorial Theory**6**(1969), 313–316. MR**0238723**

Retrieve articles in *Mathematics of Computation*
with MSC:
05B35

Retrieve articles in all journals with MSC: 05B35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0419270-0

Keywords:
Combinatorial geometries,
geometric lattice,
configuration,
catalogue of geometries,
modular filter,
Tutte polynomial

Article copyright:
© Copyright 1973
American Mathematical Society