Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Complex zeros of the error function and of the complementary error function


Authors: Henry E. Fettis, James C. Caslin and Kenneth R. Cramer
Journal: Math. Comp. 27 (1973), 401-407
MSC: Primary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1973-0326991-7
MathSciNet review: 0326991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The first one hundred zeros of the error function and of the complementary error function are given. An asymptotic formula for the higher zeros is also derived.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, Chap. 7. MR 29 #4914. MR 0167642 (29:4914)
  • [2] V. N. Faddeeva & N. M. Terent'ev, Tables of Values of the Function $ w(z) = {e^{ - {z^2}}} \times (1 + 2i{\pi ^{ - 1/2}}{\smallint _0}^z\;{e^{t2}}\;dt)$ for Complex Argument, GITTL, Moscow, 1954; English transl., Math. Tables Series, vol. 2, Pergamon Press, Oxford, 1961. MR 16, 960; MR 22 #12740. MR 0122013 (22:12740)
  • [3] B. D. Fried & S. D. Conte, The Plasma Dispersion Function. The Hilbert Transform of the Gaussian, Academic Press, New York, 1961. MR 24 #B1958. MR 0135916 (24:B1958)
  • [4] K. A. Karpov, Tables of the Function $ w(z) = {e^{ - {z^2}}}{\smallint _0}^z\;{e^{x2}}\;dx$ in a Complex Region, Izdat. Akad. Nauk SSSR, Moscow, 1954; Akad. Nauk SSSR. Vyčisl. Centr Mat. Tablicy, Izdat. Akad. Nauk SSSR, Moscow, 1958. (Russian) MR 16, 749; MR 24 #B1297.
  • [5] C. William Martz, Tables of the Complex Fresnel Integral, NASA Report SP-3010, Washington, 1964.
  • [6] H. E. Salzer, "Complex zeros of the error function," J. Franklin Inst., v. 260, 1955, pp. 209-211. MR 17, 197. MR 0071880 (17:197d)
  • [7] H. E. Salzer, "Formulas for calculating the error function of a complex variable," MTAC, v. 5, 1951, pp. 67-70. MR 13, 989; 1140. MR 0048150 (13:989b)
  • [8] H. E. Fettis, "Numerical calculation of certain definite integrals by Poisson's summation formula," MTAC, v. 9, 1955, p. 88. MR 17, 302. MR 0072546 (17:302f)
  • [9] Henry E. Fettis, James C. Caslin & Kenneth R. Cramer, An Improved Tabulation of the Plasma Dispersion Function. Parts I and II, ARL 72-0056, 72-0057, May 1972.
  • [10] Kenneth R. Cramer, Elmax Low Frequency Instabilities, ARL 72-0078, May 1972.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1973-0326991-7
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society