Calculation of the Ramanujan Dirichlet series
Author:
Robert Spira
Journal:
Math. Comp. 27 (1973), 379385
MSC:
Primary 65D20
MathSciNet review:
0326995
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A method is found for calculating the Ramanujan Dirichlet series . An inequality connecting points symmetric with the critical line, , is proved, and a table is given for for . Two zeros are found in ; they appear to be simple and on the critical line.
 [1]
G.
H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his
life and work, Cambridge University Press, Cambridge, England;
Macmillan Company, New York, 1940. MR 0004860
(3,71d)
 [2]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [3]
T.
M. Apostol and Abe
Sklar, The approximate functional equation of
Hecke’s Dirichlet series, Trans. Amer.
Math. Soc. 86
(1957), 446–462. MR 0094319
(20 #838), http://dx.doi.org/10.1090/S00029947195700943193
 [4]
R.
D. Dixon and Lowell
Schoenfeld, The size of the Riemann zetafunction at places
symmetric with respect to the point 1\over2, Duke Math. J.
33 (1966), 291–292. MR 0190103
(32 #7517)
 [5]
J.
Barkley Rosser, Explicit remainder terms for some asymptotic
series, J. Rational Mech. Anal. 4 (1955),
595–626. MR 0072969
(17,360a)
 [6]
Bruce
C. Berndt, On the zeros of a class of Dirichlet series. I,
Illinois J. Math. 14 (1970), 244–258. MR 0268363
(42 #3261)
 [1]
 G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea, New York, 1959. MR 21 #4881. MR 0004860 (3:71d)
 [2]
 M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 29 #4914. MR 0167642 (29:4914)
 [3]
 T. M. Apostol & A. Sklar, "The approximate functional equation of Hecke's Dirichlet series," Trans. Amer. Math. Soc., v. 86, 1957, pp. 446462. MR 20 #838. MR 0094319 (20:838)
 [4]
 R. D. Dixon & L. Schoenfeld, "The size of the Riemann zetafunction at places symmetric with respect to the point 1/2," Duke Math. J., v. 33, 1966, pp. 291292. MR 32 #7517. MR 0190103 (32:7517)
 [5]
 J. B. Rosser, "Explicit remainder terms for some asymptotic series," J. Rational Mech. Anal., v. 4, 1955, pp. 595626. MR 17, 360. MR 0072969 (17:360a)
 [6]
 B. C. Berndt, "On the zeros of a class of Dirichlet series. I," Illinois J. Math., v. 14, 1970, pp. 244258. MR 42 #3261. MR 0268363 (42:3261)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D20
Retrieve articles in all journals
with MSC:
65D20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197303269954
PII:
S 00255718(1973)03269954
Article copyright:
© Copyright 1973
American Mathematical Society
