Calculation of the Ramanujan -Dirichlet series

Author:
Robert Spira

Journal:
Math. Comp. **27** (1973), 379-385

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1973-0326995-4

MathSciNet review:
0326995

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method is found for calculating the Ramanujan -Dirichlet series . An inequality connecting points symmetric with the critical line, , is proved, and a table is given for for . Two zeros are found in ; they appear to be simple and on the critical line.

**[1]**G. H. Hardy,*Ramanujan*:*Twelve Lectures on Subjects Suggested by His Life and Work*, Chelsea, New York, 1959. MR**21**#4881. MR**0004860 (3:71d)****[2]**M. Abramowitz & I. A. Stegun (Editors),*Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables*, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**29**#4914. MR**0167642 (29:4914)****[3]**T. M. Apostol & A. Sklar, "The approximate functional equation of Hecke's Dirichlet series,"*Trans. Amer. Math. Soc.*, v. 86, 1957, pp. 446-462. MR**20**#838. MR**0094319 (20:838)****[4]**R. D. Dixon & L. Schoenfeld, "The size of the Riemann zeta-function at places symmetric with respect to the point 1/2,"*Duke Math. J.*, v. 33, 1966, pp. 291-292. MR**32**#7517. MR**0190103 (32:7517)****[5]**J. B. Rosser, "Explicit remainder terms for some asymptotic series,"*J. Rational Mech. Anal.*, v. 4, 1955, pp. 595-626. MR**17**, 360. MR**0072969 (17:360a)****[6]**B. C. Berndt, "On the zeros of a class of Dirichlet series. I,"*Illinois J. Math.*, v. 14, 1970, pp. 244-258. MR**42**#3261. MR**0268363 (42:3261)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0326995-4

Article copyright:
© Copyright 1973
American Mathematical Society