An asymptotic expansion of with large variable and parameters

Author:
R. Wong

Journal:
Math. Comp. **27** (1973), 429-436

MSC:
Primary 33A30

DOI:
https://doi.org/10.1090/S0025-5718-1973-0328145-7

MathSciNet review:
0328145

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we obtain an asymptotic expansion of the Whittaker function when the parameters and variable are all large but subject to the growth restrictions that and as . Here, it is assumed that *k* and *m* are real and .

**[1]**H. Buchholz,*The Confluent Hypergeometric Function*, Springer-Verlag, Berlin, 1969.**[2]**C. Chang, B. Chu & V. O'Brien, "An asymptotic expansion of the Whittaker function ,"*J. Rational Mech. Anal.*, v. 2, 1953, pp. 125-135. MR**14**, 469; 1278. MR**0051374 (14:469f)****[3]**E. T. Copson,*Asymptotic Expansions*, Cambridge Tracts in Math. and Math. Phys., no. 55, Cambridge Univ. Press, New York, 1964. MR**29**#6234. MR**2139829 (2005k:41001)****[4]**A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi,*Higher Transcendental Functions*. Vol. 2, McGraw-Hill, New York, 1953. MR**15**, 419.**[5]**A. Erdélyi & C. A. Swanson, "Asymptotic forms of Whittaker's confluent hypergeometric functions,"*Mem. Amer. Math. Soc.*, No. 25, 1957, 49 pp. MR**19**, 850. MR**0090678 (19:850d)****[6]**A. Erdélyi & M. Wyman, "The asymptotic evaluation of certain integrals,"*Arch. Rational Mech. Anal.*, v. 14, 1963, pp. 217-260. MR**28**#407. MR**0157170 (28:407)****[7]**N. D. Kazarinoff, "Asymptotic forms for the Whittaker functions with both parameters large,"*J. Math. Mech.*, v. 6, 1957, pp. 341-360. MR**19**, 133. MR**0086152 (19:133g)****[8]**L. J. Slater,*Confluent Hypergeometric Functions*, Cambridge Univ. Press, New York, 1960. MR**21**#5753. MR**0107026 (21:5753)****[9]**G. N. Watson,*A treatise on the theory of Bessel functions*, 2nd. ed., Cambridge Univ. Press, Cambridge, 1966. MR**1349110 (96i:33010)****[10]**R. Wong, "On uniform asymptotic expansion of definite integrals,"*J. Approximation Theory*. (To appear.) MR**0340910 (49:5660)****[11]**R. Wong & E. Rosenbloom, "Series expansions of involving parabolic cylinder functions,"*Math. Comp.*, v. 25, 1971, pp. 783-787. MR**0306566 (46:5689)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A30

Retrieve articles in all journals with MSC: 33A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0328145-7

Keywords:
Whittaker function,
asymptotic expansion,
parabolic cylinder functions,
Hankel functions

Article copyright:
© Copyright 1973
American Mathematical Society