Bounds on iterated coerror functions and their ratios

Author:
D. E. Amos

Journal:
Math. Comp. **27** (1973), 413-427

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1973-0331723-2

MathSciNet review:
0331723

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Upper and lower bounds on and , are established in terms of elementary functions. Numerical procedures for refining these bounds are presented so that and , can be computed to a specified accuracy. Some relations establishing bounds on and are also derived.

**[1]**M. Abramowitz & I. A. Stegun (Editors),*Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables*, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**29**#4914. MR**0167642 (29:4914)****[2]**D. F. Barrow & A. C. Cohen, Jr., "On some functions involving Mill's ratio,"*Ann. Math. Statist.*, v. 25, 1954, pp. 405-408. MR**15**, 807. MR**0061319 (15:807i)****[3 Z]**W. Birnbaum, "An inequality for Mill's ratio,"*Ann. Math. Statist.*, v. 13, 1942, pp. 245-246. MR**4**, 19. MR**0006640 (4:19b)****[4]**A. V. Boyd, "Inequalities for Mills' ratio,"*Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.*, v. 6, 1959, pp. 44-46. MR**22**#9625. MR**0118856 (22:9625)****[5]**W. Gautschi, "Computational aspects of three-term recurrence relations,"*SIAM Rev.*, v. 9, 1967, pp. 24-82. MR**35**#3927. MR**0213062 (35:3927)****[6]**W. Gautschi, "Recursive computation of the repeated integrals of the error function,"*Math. Comp.*, v. 15, 1961, pp. 227-232. MR**24**#B2113. MR**0136074 (24:B2113)****[7]**R. D. Gordon, "Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument,"*Ann. Math. Statist.*, v. 12, 1941, pp. 364-366. MR**3**, 171. MR**0005558 (3:171e)****[8]**Y. Komatu, "Elementary inequalities for Mills' ratio,"*Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.*, v. 4, 1955, pp. 33-34. MR**0079844 (18:155f)****[9]**K. B. Oldham, "Approximations for the function,"*Math. Comp.*, v. 22, 1968, p. 454.**[10]**H. O. Pollak, "A remark on "Elementary inequalities for Mills' ratio," by Y. Komatu,"*Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.*, 4, 1956, p. 40. MR**18**, 722. MR**0083529 (18:722a)****[11]**W. D. Ray & A. E. N. T. Pitman, "Chebyshev polynomial and other new approximations to Mills' ratio,"*Ann. Math. Statist.*, v. 34, 1963, pp. 892-902. MR**27**#3070. MR**0153101 (27:3070)****[12]**H. Ruben, "A convergent asymptotic expansion for Mills' ratio and the normal probability integral in terms of rational functions,"*Math. Ann.*, v. 151, 1963, pp. 355-364. MR**27**#5308. MR**0155374 (27:5308)****[13]**H. Ruben, "A new asymptotic expansion for the normal probability integral and Mills' ratio,"*J. Roy. Statist. Soc. Ser. B*, v. 24, 1962, pp. 177-179. MR**25**#2662. MR**0139226 (25:2662)****[14]**H. Ruben, "Irrational fraction approximations to Mills' ratio,"*Biometrika*, v. 51, 1964, pp. 339-345. MR**30**#3519. MR**0173306 (30:3519)****[15]**M. R. Sampford, "Some inequalities on Mills' ratio and related functions,"*Ann. Math. Statist.*, v. 24, 1953, pp. 130-132. MR**14**, 995. MR**0054890 (14:995g)****[16]**L. R. Shenton, "Inequalities for the normal integral including a new continued fraction,"*Biometrika*, v. 41, 1954, pp. 177-189. MR**15**, 884. MR**0061785 (15:884e)****[17]**R. F. Tate, "On a double inequality of the normal distribution,"*Ann. Math. Statist.*, v. 24, 1953, pp. 132-134. MR**14**, 995. MR**0054891 (14:995h)****[18]**V. R. R. Uppuluri, "A stronger version of Gautschi's inequality satisfied by the gamma function,"*Skand. Aktuarietidskr*. v. 1-2, 1964, pp. 51-52. MR**31**#4934. MR**0180703 (31:4934)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0331723-2

Keywords:
Iterated coerror function,
error function,
coerror function,
Mill's ratio,
probability integral

Article copyright:
© Copyright 1973
American Mathematical Society