The finite element method with penalty

Author:
Ivo Babuška

Journal:
Math. Comp. **27** (1973), 221-228

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1973-0351118-5

MathSciNet review:
0351118

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An application of the penalty method to the finite element method is analyzed. For a model Poisson equation with homogeneous Dirichlet boundary conditions, a variational principle with penalty is discussed. This principle leads to the solution of the Poisson equation by using functions that do not satisfy the boundary condition. The rate of convergence is discussed.

**[1]**J. H. Bramble & A. H. Schatz, "On the numerical solution of elliptic boundary value problems by least squares approximation of the data,"*Numerical Solution of Partial Differential Equations*, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 107-131. MR**42**#8713. MR**0273837 (42:8713)****[2]**J. P. Aubin & H. G. Burchard, "Some aspects of the method of the hypercircle applied to elliptic variational problems,"*Numerical Solution of Partial Differential Equations*, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 1-67. MR**44**#2359. MR**0285136 (44:2359)****[3]**J. P. Aubin,*Approximations of Elliptic Boundary-Value Problems*, Wiley, New York, 1972. MR**0478662 (57:18139)****[4]**I. Babuška, "The finite element method for elliptic differentiation equations,"*Numerical Solution of Partial Differential Equations*, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 69-106. MR**42**#8712.**[5]**I. Babuška,*Numerical Solution of Boundary Value Problems by the Perturbed Variational Principle*, Institute for Fluid Dynamics and Appl. Math., Technical Note BN-624, University of Maryland, College Park, Md., 1969.**[6]**I. Babuška, "The finite element method for elliptic equations with discontinuous coefficients,"*Computing*, v. 5, 1970, pp. 207-213. MR**43**#2856. MR**0277119 (43:2856)****[7]**J. Nitsche, "Über ein Variationsprinzip für die Lösung von Dirichlet Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind,"*Abh. Math. Sem. Univ. Hamburg*, v. 36, 1970/71. MR**0341903 (49:6649)****[8]**J.-L. Lions & E. Magènes,*Problèmes aux Limites non Homogènes et Applications*. Vol. 1, Dunod, Paris, 1968. MR**40**#512. MR**0244606 (39:5920)****[9]**I. Babuška, "Approximation by Hill functions,"*Comment. Math Univ. Carolinae*, v. 11, 1970, pp. 787-811. MR**0292309 (45:1396)****[10]**I. Babuška, "The rate of convergence for the finite element method,"*SIAM J. Numer. Anal.*, v. 8, 1971, pp. 304-315. MR**44**#4918. MR**0287715 (44:4918)****[11]**I. Babuška, "Approximation by Hill functions. II,"*Comment. Math. Univ. Carolinae*, v. 13, 1972, pp. 1-22. MR**0305550 (46:4680)****[12]**I. Babuška, "Error bounds for finite element method,"*Numer. Math.*, v. 16, 1971, pp. 322-333. MR**0288971 (44:6166)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0351118-5

Keywords:
Numerical solution of PDE,
elliptic equations,
finite element method,
penalty method

Article copyright:
© Copyright 1973
American Mathematical Society