On the vanishing of the Iwasawa invariant for
Author:
Wells Johnson
Journal:
Math. Comp. 27 (1973), 387396
MSC:
Primary 12A35; Secondary 10A40
MathSciNet review:
0384748
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The irregular primes less than 8000 are computed, and it is shown that the Iwasawa invariant for all primes .
 [1]
A.
I. Borevich and I.
R. Shafarevich, Number theory, Translated from the Russian by
Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press,
New YorkLondon, 1966. MR 0195803
(33 #4001)
 [2]
L. Carlitz, "Problem 795," Math. Mag., v. 44, 1971, p. 106.
 [3]
Kenkichi
Iwasawa, On some invariants of cyclotomic fields, Amer. J.
Math. 80 (1958), 773783; erratum 81 (1958), 280. MR 0124317
(23 #A1631)
 [4]
Kenkichi
Iwasawa, On Γextensions of algebraic
number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226.
MR
0124316 (23 #A1630), http://dx.doi.org/10.1090/S000299041959103177
 [5]
Kenkichi
Iwasawa, A class number formula for cyclotomic fields, Ann. of
Math. (2) 76 (1962), 171–179. MR 0154862
(27 #4806)
 [6]
Kenkichi
Iwasawa, On some modules in the theory of cyclotomic fields,
J. Math. Soc. Japan 16 (1964), 42–82. MR 0215811
(35 #6646)
 [7]
Kenkichi
Iwasawa and Charles
C. Sims, Computation of invariants in the theory of cyclotomic
fields, J. Math. Soc. Japan 18 (1966), 86–96.
MR
0202700 (34 #2560)
 [8a]
D.
H. Lehmer, Emma
Lehmer, and H.
S. Vandiver, An application of highspeed computing to
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 25–33. MR 0061128
(15,778f)
 [8b]
H.
S. Vandiver, Examination of methods of attack on the second case of
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 732–735. MR 0062758
(16,13f)
 [8c]
J.
L. Selfridge, C.
A. Nicol, and H.
S. Vandiver, Proof of Fermat’s last theorem for all prime
exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A.
41 (1955), 970–973. MR 0072892
(17,348a)
 [9]
D. Mirimanoff, "Sur la congruence ," J. Reine Angew. Math., v. 115, 1895, pp. 295300.
 [10]
J. L. Selfridge & B. W. Pollack, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [11]
J.P. Serre, Classes des corps cyclotomiques (d'après K. Iwasawa), Séminaire Bourbaki 1958/59, Exposé 174, fasc. 1, Secrétariat mathématique, Paris, 1959. MR 28 #1091.
 [1]
 Z. I. Borevič & I. R. Šafarevič, Number Theory, "Nauka," Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; MR 33 #4001. MR 0195803 (33:4001)
 [2]
 L. Carlitz, "Problem 795," Math. Mag., v. 44, 1971, p. 106.
 [3]
 K. Iwasawa, "On some invariants of cyclotomic fields," Amer. J. Math., v. 80, 1958, pp. 773783; erratum, ibid., v. 81, 1959, p. 280. MR 23 #A1631. MR 0124317 (23:A1631)
 [4]
 K. Iwasawa, "On extensions of algebraic number fields," Bull. Amer. Math. Soc., v. 65, 1959, pp. 183226. MR 23 #A1630. MR 0124316 (23:A1630)
 [5]
 K. Iwasawa, "A class number formula for cyclotomic fields," Ann. of Math., (2), v. 76, 1962, pp. 171179. MR 27 #4806. MR 0154862 (27:4806)
 [6]
 K. Iwasawa, "On some modules in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 16, 1964, pp. 4282. MR 35 #6646. MR 0215811 (35:6646)
 [7]
 K. Iwasawa & C. Sims, "Computation of invariants in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 18, 1966, pp. 8696. MR 34 #2560. MR 0202700 (34:2560)
 [8a]
 D. H. Lehmer, E. Lehmer & H. S. Vandiver, "An application of highspeed computing to Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 2533. MR 15, 778. MR 0061128 (15:778f)
 [8b]
 H. S. Vandiver, "Examination of methods of attack on the second case of Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 732735. MR 16, 13. MR 0062758 (16:13f)
 [8c]
 J. L. Selfridge, C. A. Nicol & H. S. Vandiver, "Proof of Fermat's last theorem for all prime exponents less than 4002," Proc. Nat. Acad. Sci. U.S.A., v. 41, 1955, pp. 970973. MR 17, 348. MR 0072892 (17:348a)
 [9]
 D. Mirimanoff, "Sur la congruence ," J. Reine Angew. Math., v. 115, 1895, pp. 295300.
 [10]
 J. L. Selfridge & B. W. Pollack, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [11]
 J.P. Serre, Classes des corps cyclotomiques (d'après K. Iwasawa), Séminaire Bourbaki 1958/59, Exposé 174, fasc. 1, Secrétariat mathématique, Paris, 1959. MR 28 #1091.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
12A35,
10A40
Retrieve articles in all journals
with MSC:
12A35,
10A40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197303847485
PII:
S 00255718(1973)03847485
Keywords:
Cyclotomic fields,
class numbers,
irregular primes,
extensions,
cyclotomic invariants,
Fermat's Last Theorem
Article copyright:
© Copyright 1973
American Mathematical Society
