On the vanishing of the Iwasawa invariant for

Author:
Wells Johnson

Journal:
Math. Comp. **27** (1973), 387-396

MSC:
Primary 12A35; Secondary 10A40

DOI:
https://doi.org/10.1090/S0025-5718-1973-0384748-5

MathSciNet review:
0384748

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The irregular primes less than 8000 are computed, and it is shown that the Iwasawa invariant for all primes .

**[1]**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****[2]**L. Carlitz, "Problem 795,"*Math. Mag.*, v. 44, 1971, p. 106.**[3]**Kenkichi Iwasawa,*On some invariants of cyclotomic fields*, Amer. J. Math. 80 (1958), 773-783; erratum**81**(1958), 280. MR**0124317****[4]**Kenkichi Iwasawa,*On Γ-extensions of algebraic number fields*, Bull. Amer. Math. Soc.**65**(1959), 183–226. MR**0124316**, https://doi.org/10.1090/S0002-9904-1959-10317-7**[5]**Kenkichi Iwasawa,*A class number formula for cyclotomic fields*, Ann. of Math. (2)**76**(1962), 171–179. MR**0154862**, https://doi.org/10.2307/1970270**[6]**Kenkichi Iwasawa,*On some modules in the theory of cyclotomic fields*, J. Math. Soc. Japan**16**(1964), 42–82. MR**0215811**, https://doi.org/10.2969/jmsj/01610042**[7]**Kenkichi Iwasawa and Charles C. Sims,*Computation of invariants in the theory of cyclotomic fields*, J. Math. Soc. Japan**18**(1966), 86–96. MR**0202700**, https://doi.org/10.2969/jmsj/01810086**[8a]**D. H. Lehmer, Emma Lehmer, and H. S. Vandiver,*An application of high-speed computing to Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 25–33. MR**0061128****[8b]**H. S. Vandiver,*Examination of methods of attack on the second case of Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 732–735. MR**0062758****[8c]**J. L. Selfridge, C. A. Nicol, and H. S. Vandiver,*Proof of Fermat’s last theorem for all prime exponents less than 4002*, Proc. Nat. Acad. Sci. U.S.A.**41**(1955), 970–973. MR**0072892****[9]**D. Mirimanoff, "Sur la congruence ,"*J. Reine Angew. Math.*, v. 115, 1895, pp. 295-300.**[10]**J. L. Selfridge & B. W. Pollack, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[11]**J.-P. Serre,*Classes des corps cyclotomiques*(*d'après K. Iwasawa*), Séminaire Bourbaki 1958/59, Exposé 174, fasc. 1, Secrétariat mathématique, Paris, 1959. MR**28**#1091.

Retrieve articles in *Mathematics of Computation*
with MSC:
12A35,
10A40

Retrieve articles in all journals with MSC: 12A35, 10A40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0384748-5

Keywords:
Cyclotomic fields,
class numbers,
irregular primes,
-extensions,
cyclotomic invariants,
Fermat's Last Theorem

Article copyright:
© Copyright 1973
American Mathematical Society