On the vanishing of the Iwasawa invariant for

Author:
Wells Johnson

Journal:
Math. Comp. **27** (1973), 387-396

MSC:
Primary 12A35; Secondary 10A40

DOI:
https://doi.org/10.1090/S0025-5718-1973-0384748-5

MathSciNet review:
0384748

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The irregular primes less than 8000 are computed, and it is shown that the Iwasawa invariant for all primes .

**[1]**Z. I. Borevič & I. R. Šafarevič,*Number Theory*, "Nauka," Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR**30**#1080; MR**33**#4001. MR**0195803 (33:4001)****[2]**L. Carlitz, "Problem 795,"*Math. Mag.*, v. 44, 1971, p. 106.**[3]**K. Iwasawa, "On some invariants of cyclotomic fields,"*Amer. J. Math.*, v. 80, 1958, pp. 773-783; erratum, ibid., v. 81, 1959, p. 280. MR**23**#A1631. MR**0124317 (23:A1631)****[4]**K. Iwasawa, "On -extensions of algebraic number fields,"*Bull. Amer. Math. Soc.*, v. 65, 1959, pp. 183-226. MR**23**#A1630. MR**0124316 (23:A1630)****[5]**K. Iwasawa, "A class number formula for cyclotomic fields,"*Ann. of Math.*, (2), v. 76, 1962, pp. 171-179. MR**27**#4806. MR**0154862 (27:4806)****[6]**K. Iwasawa, "On some modules in the theory of cyclotomic fields,"*J. Math. Soc. Japan*, v. 16, 1964, pp. 42-82. MR**35**#6646. MR**0215811 (35:6646)****[7]**K. Iwasawa & C. Sims, "Computation of invariants in the theory of cyclotomic fields,"*J. Math. Soc. Japan*, v. 18, 1966, pp. 86-96. MR**34**#2560. MR**0202700 (34:2560)****[8a]**D. H. Lehmer, E. Lehmer & H. S. Vandiver, "An application of high-speed computing to Fermat's last theorem,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 40, 1954, pp. 25-33. MR**15**, 778. MR**0061128 (15:778f)****[8b]**H. S. Vandiver, "Examination of methods of attack on the second case of Fermat's last theorem,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 40, 1954, pp. 732-735. MR**16**, 13. MR**0062758 (16:13f)****[8c]**J. L. Selfridge, C. A. Nicol & H. S. Vandiver, "Proof of Fermat's last theorem for all prime exponents less than 4002,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 41, 1955, pp. 970-973. MR**17**, 348. MR**0072892 (17:348a)****[9]**D. Mirimanoff, "Sur la congruence ,"*J. Reine Angew. Math.*, v. 115, 1895, pp. 295-300.**[10]**J. L. Selfridge & B. W. Pollack, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[11]**J.-P. Serre,*Classes des corps cyclotomiques*(*d'après K. Iwasawa*), Séminaire Bourbaki 1958/59, Exposé 174, fasc. 1, Secrétariat mathématique, Paris, 1959. MR**28**#1091.

Retrieve articles in *Mathematics of Computation*
with MSC:
12A35,
10A40

Retrieve articles in all journals with MSC: 12A35, 10A40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0384748-5

Keywords:
Cyclotomic fields,
class numbers,
irregular primes,
-extensions,
cyclotomic invariants,
Fermat's Last Theorem

Article copyright:
© Copyright 1973
American Mathematical Society