TABLE ERRATA

By a more extended calculation, the continued fraction herein for Euler's constant has been found to be correct to only the first 3251 partial quotients of the 3470 listed. This error affects the accompanying statistical table as well as Table 1 on p. 390 of the authors' related paper [1].

William A. Beyer
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

On p. 31, in Formula 17 the Fourier cosine transform of

\[
\text{cosh}(\beta x) + \cos c^{-1} \cosh(ax)
\]

should read

\[
\pi^{-1} \csc c \left[\cos[(\pi - c)/\beta] \cosh[\nu(\pi + c)/\beta] - \cos[(\pi + c)/\beta] \cosh[\nu(\pi - c)/\beta] \right] \\
\times \left[\cosh(2\pi y/\beta) - \cos(2\pi a/\beta) \right]^{-1}
\]

Henry E. Fettis
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 54533

On p. 527, formula 4.224(11) is incorrect for the cases \(a^2 < 1 \) and \(a^2 > 1 \).

When \(a > 0 \), the common value of the integrals \(\int_0^{\pi/2} \ln(1 + a \sin x)^2 \, dx \) and
\[\int_0^{\pi/2} \ln(1 + a \cos x)^2 \, dx \] can be written as
\[\pi \ln(a/2) + 4G + 4S(b), \]
where \(G \) is Catalan's constant, \(b = (1 - a)/(1 + a) \), and
\[S(b) = \sum_{k=1}^{\infty} \frac{b^k}{k} \sum_{n=1}^{k} \frac{(-1)^{n+1}}{2n - 1}. \]

Akin Ojo
J. Sadiku

Departments of Physics and Mathematics
University of Ibadan
Ibadan, Nigeria

Editorial note: Alternatively, when \(a^2 \leq 1 \), the value of these integrals can be expressed as
\[\pi \ln(1 + (1 - a^2)^{1/2})/2 - 2 \sin^{-1} a \ln(1 + (1 - a^2)^{1/2})/a + 4 \text{Cl}_t(\sin^{-1} a) - \text{Cl}_t(2 \sin^{-1} a), \]
where \(\text{Cl}_t(x) \) is Clausen's integral. When \(a \geq 1 \), the value is \(\pi \ln(a/2) + 4 \text{Cl}_t(\sin^{-1} 1/a) - \text{Cl}_t(2 \sin^{-1} 1/a). \)