More about four biquadrates equal one biquadrate

Authors:
Kermit Rose and Simcha Brudno

Journal:
Math. Comp. **27** (1973), 491-494

MSC:
Primary 65A05; Secondary 10-04

MathSciNet review:
0329184

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A computer-generated table of the first 82 numerical solutions of is presented. Some regularities are noted.

**[1]**R. Norrie,*University of St. Andrews*500*th Anniversary Memorial Volume*, Edinburgh, 1911.**[2]**J. O. Patterson,*A note on the Diophantine problem of finding four biquadrates whose sum is a biquadrate*, Bull. Amer. Math. Soc.**48**(1942), 736–737. MR**0006737**, 10.1090/S0002-9904-1942-07769-X**[3]**Morgan Ward,*Euler’s problem on sums of three fourth powers*, Duke Math. J.**15**(1948), 827–837. MR**0027287****[4]**L. J. Lander, T. R. Parkin, and J. L. Selfridge,*A survey of equal sums of like powers*, Math. Comp.**21**(1967), 446–459. MR**0222008**, 10.1090/S0025-5718-1967-0222008-0**[5]**John Leech,*On 𝐴⁴+𝐵⁴+𝐶⁴+𝐷⁴=𝐸⁴*, Proc. Cambridge Philos. Soc.**54**(1958), 554–555. MR**0095800****[6]**Simcha Brudno,*A further example of 𝐴⁴+𝐵⁴+𝐶⁴+𝐷⁴=𝐸⁴*, Proc. Cambridge Philos. Soc.**60**(1964), 1027–1028. MR**0166151**

Retrieve articles in *Mathematics of Computation*
with MSC:
65A05,
10-04

Retrieve articles in all journals with MSC: 65A05, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0329184-2

Keywords:
Fourth-order equations,
numerical tables

Article copyright:
© Copyright 1973
American Mathematical Society