Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Rate of convergence estimates for nonselfadjoint eigenvalue approximations


Authors: J. H. Bramble and J. E. Osborn
Journal: Math. Comp. 27 (1973), 525-549
MSC: Primary 65J05
DOI: https://doi.org/10.1090/S0025-5718-1973-0366029-9
MathSciNet review: 0366029
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a general approximation theory for the eigenvalues and corresponding subspaces of generalized eigenfunctions of a certain class of compact operators is developed. This theory is then used to obtain rate of convergence estimates for the errors which arise when the eigenvalues of nonselfadjoint elliptic partial differential operators are approximated by Rayleigh-Ritz-Galerkin type methods using finite-dimensional spaces of trial functions, e.g. spline functions. The approximation methods include several in which the functions in the space of trial functions are not required to satisfy any boundary conditions.


References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, "The Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues. I, II," Proc. Nat. Acad. Sci. U.S.A., v. 34, 1948, pp. 474-480, 594-601. MR 10, 382.
  • [2] N. Aronszajn, "Approximation methods for eigenvalues of completely continuous symmetric operators," Proc. Sympos. Spectral Theory and Differential Problems, Stillwater, Oklahoma, 1951, pp. 179-202. MR 13, 469. MR 0044736 (13:469b)
  • [3] N. Aronszajn & A. Weinstein, "Existence, convergence, and equivalence in the unified theory of eigenvalues of plates and membranes," Proc. Nat. Acad. Sci. U.S.A., v. 27, 1941, pp. 188-191. MR 3, 44. MR 0004679 (3:44d)
  • [4] I. Babuška, "Approximation by hill functions," Comment Math. Univ. Carolinae, v. 11, 1970, pp. 787-811. MR 0292309 (45:1396)
  • [5] I. Babuška, Approximation by Hill Functions II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md., 1971.
  • [6] I. Babuška, The Finite Element Method with Lagrangian Multipliers, Technical Note BN-724, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md., 1972.
  • [7] N. W. Bazley, "Lower bounds for eigenvalues," J. Math. Mech., v. 10, 1961, pp. 289-308. MR 23 #B1651. MR 0128612 (23:B1651)
  • [8] N. W. Bazley & D. W. Fox, "Truncations in the method of intermediate problems for lower bounds to eigenvalues," J. Res. Nat. Bur. Standards Sect. B, v. 65B, 1961, pp. 105-111. MR 26 #464. MR 0142897 (26:464)
  • [9] N. W. Bazley & D. W. Fox, "A procedure for estimating eigenvalues," J. Mathematical Phys., v. 3, 1962, pp. 469-471. MR 26 #1998. MR 0144454 (26:1998)
  • [10] Ju. M. Berezanskiĭ, Expansion in Eigenfunctions of Self Adjoint Operators, Naukova Dumka, Kiev, 1965; English transl., Transl. Math. Monographs, vol. 17, Amer. Math. Soc., Providence, R. I., 1968. MR 36 #5768; 36 #5769.
  • [11] G. Birkhoff, C. de Boor, B. Swartz & B. Wendroff, "Rayleigh-Ritz approximation by piecewise cubic polynomials," SIAM J. Numer. Anal., v. 3, 1966, pp. 188-203. MR 34 #3773. MR 0203926 (34:3773)
  • [12] J. H. Bramble, T. Dupont & V. Thomée, "Projection methods for Dirichlet's problem in approximating polygonal domains with boundary-value corrections," Math Comp., v. 26, 1972, pp. 869-879. MR 0343657 (49:8397)
  • [13] J. H. Bramble & S. R. Hilbert, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation," SIAM J. Numer. Anal., v. 7, 1970, pp. 112-124. MR 41 #7819. MR 0263214 (41:7819)
  • [14] J. H. Bramble & S. R. Hilbert, "Bounds for a class of linear functionals with application to Hermite interpolation," Numer. Math., v. 16, 1970/71, pp. 362-369. MR 44 #7704. MR 0290524 (44:7704)
  • [15] J. H. Bramble & A. H. Schatz, "Rayleigh-Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions," Comm. Pure Appl. Math., v. 23, 1970, pp. 653-675. MR 42 #2690. MR 0267788 (42:2690)
  • [16] J. H. Bramble & A. H. Schatz, "Least squares methods for 2mth order elliptic boundary-value problems," Math. Comp., v. 25, 1971, pp. 1-32. MR 0295591 (45:4657)
  • [17] J. H. Bramble & M. Zlámal, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809-820. MR43 #8250. MR 0282540 (43:8250)
  • [18] P. G. Ciarlet & P.-A. Raviart, "Interpolation theory over curved elements, with application to finite element methods," Computer Methods in Appl. Mech. and Engineering, v. 1, 1972, pp. 217-249. MR 0375801 (51:11991)
  • [19] P. G. Ciarlet, M. H. Schultz & R. S. Varga, "Numerical methods of high-order accuracy for nonlinear boundary value problems. III. Eigenvalue problems," Numer. Math., v. 12, 1968, pp. 120-133. MR 38 #1838. MR 0233517 (38:1838)
  • [20] N. Dunford & J. T. Schwartz, Linear Operators. II: Spectral Theory. Selfadjoint Operators in Hilbert Space, Interscience, New York, 1963. MR 32 #6181. MR 0188745 (32:6181)
  • [21] G. Fichera, "Approximation and estimates for eigenvalues," in Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) (Edited by J. H. Bramble), Academic Press, New York, 1966, pp. 317-352. MR 36 #733. MR 0217644 (36:733)
  • [22] G. Fichera, "Further developments in the approximation theory of eigenvalues," in Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos. Univ. of Maryland, 1970) (Edited by B. Hubbard), Academic Press, New York. 1971, pp. 243-252. MR 43 #2841. MR 0277104 (43:2841)
  • [23] F. di Guglielmo, "Construction d'approximations des espaces de Sobolev sur des réseaux en simplexes," Calcolo, v. 6, 1969, pp. 279-331. MR 0433113 (55:6092)
  • [24] S. Hilbert, Numerical Methods for Elliptic Boundary Problems, Thesis, University of Maryland, College Park, Md., 1969.
  • [25] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [26] J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications. Vol. I, Travaux et Recherches Mathématiques, no. 17, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
  • [27] I. Marek, Approximation of the Principal Eigenelements in K-Positive Non Self-Adjoint Eigenvalue Problems, MRC Technical Summary Report #1094, University of Wisconsin, Madison, Wis., 1971.
  • [28] J. Nitsche, "Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind," Abh. Math. Sem. Univ. Hamburg, v. 36, 1970/71. MR 0341903 (49:6649)
  • [29] J. Nitsche, "A projection method for Dirichlet-problems using subspaces with nearly zero boundary conditions." (Preprint.)
  • [30] J. E. Osborn, "Approximation of the eigenvalues of non self-adjoint operators," J. Math. and Phys., v. 45, 1966, pp. 391-401. MR 34 #8189. MR 0208379 (34:8189)
  • [31] J. E. Osborn, "Approximation of the eigenvalues of a class of unbounded, non self-adjoint operators," SIAM J. Numer. Anal., v. 4, 1967, pp. 45-54. MR 35 #4758. MR 0213904 (35:4758)
  • [32] J. E. Osborn, "A method for approximating the eigenvalues of non self-adjoint ordinary differential operators," Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (4), no. 14. pp. 1-56.
  • [33] J. G. Pierce & R. S. Varga, "Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: I. Estimates relating Raleigh-Ritz and Galerkin approximations to eigenfunctions," SIAM J. Numer. Anal., v. 9, 1972, pp. 137-151. MR 0395268 (52:16065)
  • [34] J. G. Pierce & R. S. Varga, "Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: II. Improved error bounds for eigenfunctions", Numer. Math., v. 19, 1972, pp. 155-169. MR 0323133 (48:1491)
  • [35] M. Schechter, "On $ {L^p}$ estimates and regularity I," Amer. J. Math., v. 85, 1963, pp. 1-13. MR 32 #6051. MR 0188615 (32:6051)
  • [36] M. Schechter, "On $ {L^p}$ estimates and regularity II," Math. Scand., v. 13, 1963, pp. 47-69. MR 32 #6052. MR 0188616 (32:6052)
  • [37] I. J. Schoenberg, "Contributions to the problem of approximation of equidistant data by analytic functions," Quart. Appl. Math., v. 4, 1946, part A, pp. 45-99, part B, pp. 112-141. MR 7, 487; 8, 55.
  • [38] M. H. Schultz, "Rayleigh-Ritz-Galerkin methods for multi-dimensional problems," SIAM J. Numer. Anal., v. 6, 1969, pp. 523-538. MR 41 #7859. MR 0263254 (41:7859)
  • [39] M. H. Schultz, "Multivariate spline functions and elliptic problems," in Approximation with Special Emphasis on Spline Functions (Edited by I. J. Schoenberg), Academic Press, New York, 1969, pp. 279-347. MR 41 #2210. MR 0257560 (41:2210)
  • [40] M. H. Schultz, "$ {L^2}$ error bounds for the Rayleigh-Ritz-Galerkin method," SIAM J. Numer. Anal., v. 8, 1971, pp. 737-748. MR 0298918 (45:7967)
  • [41] W. Stenger, "On the variational principles for eigenvalues for a class of unbounded operators," J. Math. Mech., v. 17, 1967/68, pp. 641-648. MR 37 #3384. MR 0227800 (37:3384)
  • [42] G. M. Vaĭnikko, "Asymptotic evaluation of the error of projection methods for the eigenvalue problem," Ž. Vyčisl. Mat. i Mat. Fiz., v. 4, 1964, pp. 405-425. USSR Comput. Math. and Math. Phys., v. 4, 1964, pp. 9-36. MR 0176340 (31:615)
  • [43] G. M. Vainikko, "On the rate of convergence of certain approximation methods of Galerkin type in an eigenvalue problem," Izv. Vysš. Učebn. Zaved. Matematika, 1966, no. 2(51), pp. 37-45; English transl., Amer. Math. Soc. Transl. (2), v. 86, 1970, pp. 249-259. MR 33 #6824; 41 #1462. MR 0198669 (33:6824)
  • [44] G. M. Vainikko, "On the speed of convergence of approximate methods in the eigenvalue problem," Ž. Vyčisl. Mat. i Mat. Fiz., v. 7, 1967, pp. 977-987. USSR Comput. Math. and Math. Phys., v. 7, 1967, pp. 18-32.
  • [45] H. F. Weinberger, "Error estimation in the Weinstein method for eigenvalues," Proc. Amer. Math. Soc., v. 3, 1952, pp. 643-646. MR 14, 290. MR 0050177 (14:290c)
  • [46] H. F. Weinberger, A Theory of Lower Bounds for Eigenvalues, Technical Note BN-183, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md., 1959.
  • [47] A. Weinstein, "Sur la stabilité des plaques encastrées," C. R. Acad. Sci. Paris, v. 200, 1935, pp. 107-109.
  • [48] A. Weinstein, "Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques," Mem. Sci. Math., v. 88, 1937.
  • [49] A. Weinstein, "Bounds for eigenvalues and the method of intermediate problems," Proc. Internat. Conf. Partial Differential Equations and Continuum Mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961, pp. 39-53. MR 23 #A3365. MR 0126068 (23:A3365)
  • [50] A. Weinstein, "A necessary and sufficient condition in the maximum-minimum theory of eigenvalues," Studies in Math. Anal. and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 429-434. MR 26 #7142. MR 0149657 (26:7142)
  • [51] A. Weinstein, "Intermediate problems and the maximum-minimum theory of eigenvalues," J. Math. Mech., v. 12, 1963, pp. 235-246, MR 27 #5025. MR 0155083 (27:5025)
  • [52] A. Weinstein, "An invariant formulation of the new maximum-minimum theory of eigenvalues," J. Math. Mech., v. 16, 1966, pp. 213-218. MR 35 #3475. MR 0212604 (35:3475)
  • [53] O. C. Zienkiewicz, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, New York, 1967.
  • [54] M. Zlámal, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394-409. MR 39 #5074. MR 0243753 (39:5074)
  • [55] M. Zlámal, "Curved elements in the finite element method." (Preprint.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65J05

Retrieve articles in all journals with MSC: 65J05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1973-0366029-9
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society