A lower bound for the set of odd perfect numbers

Author:
Peter Hagis

Journal:
Math. Comp. **27** (1973), 951-953

MSC:
Primary 10A25; Secondary 10-04

DOI:
https://doi.org/10.1090/S0025-5718-1973-0325507-9

MathSciNet review:
0325507

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved here that if *n* is odd and perfect, then .

**[1]**P. Hagis, Jr., "If*n*is odd and perfect then . A case study proof with a supplement in which the lower bound is improved to ." Copy deposited in UMT file.**[2]**P. Hagis, Jr., & W. L. McDaniel, "On the largest prime divisor of an odd perfect number,"*Math. Comp.*, v. 27, 1973, 955-957. MR**0325508 (48:3855)****[3]**H.-J. Kanold, "Folgerungen aus dem Vorkommen einer Gauss'schen Primzahl in der Primfaktorenzerlegung einer ungeraden vollkommenen Zahl,"*J. Reine Angew. Math.*, v. 186, 1944, pp. 25-29. MR**6**, 255. MR**0012079 (6:255c)****[4]**H.-J. Kanold, "Über mehrfach vollkommene Zahlen. II,"*J. Reine Angew. Math.*, v. 197, 1957, pp. 82-96. MR**18**, 873. MR**0084514 (18:873b)****[5]**J. B. Muskat, "On divisors of odd perfect numbers,"*Math. Comp.*, v. 20, 1966, pp. 141-144. MR**32**#4076. MR**0186617 (32:4076)****[6]**T. Nagell,*Introduction to Number Theory*, Wiley, New York; Almqvist & Wiksell, Stockholm, 1951. MR**13**, 207. MR**0043111 (13:207b)****[7]**K. Norton, "Remarks on the number of factors of an odd perfect number,"*Acta Arith.*, v. 6, 1960, pp. 365-374. MR**26**#4950. MR**0147434 (26:4950)****[8]**C. Pomerance, "Odd perfect numbers are divisible by at least 7 distinct primes,"*Notices Amer. Math. Soc.*, v. 19, 1972, pp. A622-A623. Abstract #696-10-5.**[9]**N. Robbins, "The nonexistence of odd perfect numbers with less than seven distinct prime factors,"*Notices Amer. Math. Soc.*, v. 19, 1972, p. A52.**[10]**B. Tuckerman, "Odd perfect numbers: A search procedure, and a new lower bound of ," IBM Research Report RC-1925, October 20, 1967. Copy deposited in UMT file;*Notices Amer. Math. Soc.*, v. 15, 1968, p. 226. Abstract 68T-116.**[11]**B. Tuckerman, "A search procedure and lower bound for odd perfect numbers."*Math. Comp.*, v. 27, 1973, 943-949. MR**0325506 (48:3853)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
10-04

Retrieve articles in all journals with MSC: 10A25, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0325507-9

Article copyright:
© Copyright 1973
American Mathematical Society