Primitive binary polynomials
Author:
Wayne Stahnke
Journal:
Math. Comp. 27 (1973), 977980
MSC:
Primary 12C05; Secondary 1204
MathSciNet review:
0327722
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: One primitive polynomial modulo two is listed for each degree n through . Each polynomial has the minimum number of terms possible for its degree. The method used to generate the list is described.
 [1]
P. H. R. Scholefield, "Shift registers generating maximumlength sequences," Electronic Technology, v. 37, 1960, pp. 389394.
 [2]
Solomon
W. Golomb, Shift register sequences, With portions coauthored
by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales, HoldenDay
Inc., San Francisco, Calif., 1967. MR 0242575
(39 #3906)
 [3]
E.
J. Watson, Primitive polynomials
(𝑚𝑜𝑑2), Math. Comp.
16 (1962),
368–369. MR 0148256
(26 #5764), http://dx.doi.org/10.1090/S00255718196201482561
 [4]
Elwyn
R. Berlekamp, Algebraic coding theory, McGrawHill Book Co.,
New York, 1968. MR 0238597
(38 #6873)
 [5]
N. Zierler & J. Brillhart, "On primitive trinomials ," Information Control, v. 13, 1968, pp. 541554; II, v. 14, 1969, pp. 566569. MR 38 #5750; MR 39 #5521.
 [6]
R. W. Marsh, Table of Irreducible Polynomials Over Through Degree 19, Office of Technical Services, Department of Commerce, Washington, D. C., October 24, 1957.
 [7]
Hans
Riesel, En bok om primtal, Studentlitteratur, Lund, 1968
(Swedish). MR
0269612 (42 #4507)
 [8]
J. Brillhart, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447450.
 [9]
John
Brillhart and J.
L. Selfridge, Some factorizations of 2ⁿ±1 and related
results, Math. Comp. 21 (1967), 8796; corrigendum, ibid.
21 (1967), 751. MR 0224532
(37 #131)
 [10]
K.
R. Isemonger, Complete factorization of
2¹⁵⁹1, Math. Comp. 15 (1961), 295–296.
MR
0124263 (23 #A1577), http://dx.doi.org/10.1090/S00255718196101242639
 [11]
K.
R. Isemonger, Some additional factorizations of
2ⁿ±1, Math. Comp. 19 (1965), 145–146. MR 0170846
(30 #1081), http://dx.doi.org/10.1090/S00255718196501708463
 [12]
M.
Kraitchik, Introduction à la théorie des
nombres, GauthierVillars, Paris, 1952 (French). MR 0051845
(14,535a)
 [13]
Maurice
Kraitchik, On the factorization of 2ⁿ±1, Scripta
Math. 18 (1952), 39–52. MR 0049113
(14,121e)
 [14]
Raphael
M. Robinson, Some factorizations of numbers of the
form 2ⁿ±1, Math. Tables Aids
Comput. 11 (1957),
265–268. MR 0094313
(20 #832), http://dx.doi.org/10.1090/S00255718195700943136
 [1]
 P. H. R. Scholefield, "Shift registers generating maximumlength sequences," Electronic Technology, v. 37, 1960, pp. 389394.
 [2]
 S. W. Golomb, Shift Register Sequences, HoldenDay, San Francisco, Calif., 1967. MR 39 #3906. MR 0242575 (39:3906)
 [3]
 E. I. Watson, "Primitive polynomials ," Math. Comp., v. 16, 1962, pp. 368369. MR 26 #5764. MR 0148256 (26:5764)
 [4]
 E. R. Berlekamp, Algebraic Coding Theory, McGrawHill, New York, 1968. MR 38 #6873. MR 0238597 (38:6873)
 [5]
 N. Zierler & J. Brillhart, "On primitive trinomials ," Information Control, v. 13, 1968, pp. 541554; II, v. 14, 1969, pp. 566569. MR 38 #5750; MR 39 #5521.
 [6]
 R. W. Marsh, Table of Irreducible Polynomials Over Through Degree 19, Office of Technical Services, Department of Commerce, Washington, D. C., October 24, 1957.
 [7]
 H. Riesel, En Bok om Primtal [A Book on Prime Numbers], Studentlitteratur, Lund, 1968. (Swedish) MR 42 #4507. MR 0269612 (42:4507)
 [8]
 J. Brillhart, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447450.
 [9]
 J. Brillhart & J. L. Selfridge, "Some factorizations of and related results," Math. Comp., v. 21, 1967, pp. 8796. MR 37 #131. MR 0224532 (37:131)
 [10]
 K. R. Isemonger, "Complete factorization of ," Math. Comp., v. 15, 1961, pp. 295296. MR 23 #A1577. MR 0124263 (23:A1577)
 [11]
 K. R. Isemonger, "Some additional factorizations of ," Math. Comp., v. 19, 1965, pp. 145146. MR 30 #1081. MR 0170846 (30:1081)
 [12]
 M. Kraitchik, Introduction à la Théorie des Nombres, GauthierVillars, Paris, 1952. MR 14, 535. MR 0051845 (14:535a)
 [13]
 M. Kraitchik, "On the factorization of ," Scripta Math., v. 18, 1952, pp. 3952. MR 14, 121. MR 0049113 (14:121e)
 [14]
 R. M. Robinson, "Some factorizations of numbers of the form ," MTAC, v. 11, 1957, pp. 265268. MR 20 #832. MR 0094313 (20:832)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
12C05,
1204
Retrieve articles in all journals
with MSC:
12C05,
1204
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197303277227
PII:
S 00255718(1973)03277227
Keywords:
Primitive polynomials,
finite field,
Mersenne numbers,
shiftregister sequences
Article copyright:
© Copyright 1973 American Mathematical Society
