Primitive binary polynomials

Author:
Wayne Stahnke

Journal:
Math. Comp. **27** (1973), 977-980

MSC:
Primary 12C05; Secondary 12-04

DOI:
https://doi.org/10.1090/S0025-5718-1973-0327722-7

MathSciNet review:
0327722

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One primitive polynomial modulo two is listed for each degree *n* through . Each polynomial has the minimum number of terms possible for its degree. The method used to generate the list is described.

**[1]**P. H. R. Scholefield, "Shift registers generating maximum-length sequences,"*Electronic Technology*, v. 37, 1960, pp. 389-394.**[2]**Solomon W. Golomb,*Shift register sequences*, With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1967. MR**0242575****[3]**E. J. Watson,*Primitive polynomials (𝑚𝑜𝑑2)*, Math. Comp.**16**(1962), 368–369. MR**0148256**, https://doi.org/10.1090/S0025-5718-1962-0148256-1**[4]**Elwyn R. Berlekamp,*Algebraic coding theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968. MR**0238597****[5]**N. Zierler & J. Brillhart, "On primitive trinomials ,"*Information Control*, v. 13, 1968, pp. 541-554; II, v. 14, 1969, pp. 566-569. MR**38**#5750; MR**39**#5521.**[6]**R. W. Marsh,*Table of Irreducible Polynomials Over**Through Degree*19, Office of Technical Services, Department of Commerce, Washington, D. C., October 24, 1957.**[7]**Hans Riesel,*En bok om primtal*, Studentlitteratur, Lund, 1968 (Swedish). MR**0269612****[8]**J. Brillhart, "Some miscellaneous factorizations,"*Math. Comp.*, v. 17, 1963, pp. 447-450.**[9]**John Brillhart and J. L. Selfridge,*Some factorizations of 2ⁿ±1 and related results*, Math. Comp. 21 (1967), 87-96; corrigendum, ibid.**21**(1967), 751. MR**0224532**, https://doi.org/10.1090/S0025-5718-67-99898-5**[10]**K. R. Isemonger,*Complete factorization of 2¹⁵⁹-1*, Math. Comp.**15**(1961), 295–296. MR**0124263**, https://doi.org/10.1090/S0025-5718-1961-0124263-9**[11]**K. R. Isemonger,*Some additional factorizations of 2ⁿ±1*, Math. Comp.**19**(1965), 145–146. MR**0170846**, https://doi.org/10.1090/S0025-5718-1965-0170846-3**[12]**M. Kraitchik,*Introduction à la théorie des nombres*, Gauthier-Villars, Paris, 1952 (French). MR**0051845****[13]**Maurice Kraitchik,*On the factorization of 2ⁿ±1*, Scripta Math.**18**(1952), 39–52. MR**0049113****[14]**Raphael M. Robinson,*Some factorizations of numbers of the form 2ⁿ±1*, Math. Tables Aids Comput.**11**(1957), 265–268. MR**0094313**, https://doi.org/10.1090/S0025-5718-1957-0094313-6

Retrieve articles in *Mathematics of Computation*
with MSC:
12C05,
12-04

Retrieve articles in all journals with MSC: 12C05, 12-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0327722-7

Keywords:
Primitive polynomials,
finite field,
Mersenne numbers,
shift-register sequences

Article copyright:
© Copyright 1973
American Mathematical Society