Symmetrization of the fluid dynamic matrices with applications

Author:
Eli Turkel

Journal:
Math. Comp. **27** (1973), 729-736

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1973-0329279-3

MathSciNet review:
0329279

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The matrices occurring in the equations of inviscid fluid dynamics are simultaneously symmetrized by a similarity transformation. The resulting matrices decompose into several lower-dimensional blocks. In addition these blocks are more sparse than previously obtained. These properties are then used to find a sufficiency proof for an improved version of the two-step Richtmyer method.

**[1]**S. Z. Burstein, "Finite difference calculations for hydrodynamic flows containing discontinuities,"*J. Computational Phys.*, v. 1, 1966, pp. 198-222.**[2]**B. Eilon, D. Gottlieb, and G. Zwas,*Numerical stabilizers and computing time for second-order accurate schemes*, J. Computational Phys.**9**(1972), 387–397. MR**0300471****[3]**K. O. Friedrichs and P. D. Lax,*Systems of conservation equations with a convex extension*, Proc. Nat. Acad. Sci. U.S.A.**68**(1971), 1686–1688. MR**0285799****[4]**S. K. Godunov,*The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics*, Uspehi Mat. Nauk**17**(1962), no. 3 (105), 147–158 (Russian). MR**0155511****[5]**A. Kasahara & D. Houghton, "An example of nonunique discontinuous solutions in fluid dynamics,"*J. Computational Phys.*, v. 4, 1969, pp. 377-388.**[6]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[7]**Peter D. Lax and Burton Wendroff,*Difference schemes for hyperbolic equations with high order of accuracy*, Comm. Pure Appl. Math.**17**(1964), 381–398. MR**0170484**, https://doi.org/10.1002/cpa.3160170311**[8]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[9]**Gilbert Strang,*Accurate partial difference methods. II. Non-linear problems*, Numer. Math.**6**(1964), 37–46. MR**0166942**, https://doi.org/10.1007/BF01386051**[10]**Gilbert Strang,*On the construction and comparison of difference schemes*, SIAM J. Numer. Anal.**5**(1968), 506–517. MR**0235754**, https://doi.org/10.1137/0705041**[11]**Gideon Zwas,*On two step Lax-Wendroff methods in several dimensions*, Numer. Math.**20**(1972/73), 350–355. MR**0323126**, https://doi.org/10.1007/BF01402557

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0329279-3

Article copyright:
© Copyright 1973
American Mathematical Society