Symmetrization of the fluid dynamic matrices with applications

Author:
Eli Turkel

Journal:
Math. Comp. **27** (1973), 729-736

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1973-0329279-3

MathSciNet review:
0329279

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The matrices occurring in the equations of inviscid fluid dynamics are simultaneously symmetrized by a similarity transformation. The resulting matrices decompose into several lower-dimensional blocks. In addition these blocks are more sparse than previously obtained. These properties are then used to find a sufficiency proof for an improved version of the two-step Richtmyer method.

**[1]**S. Z. Burstein, "Finite difference calculations for hydrodynamic flows containing discontinuities,"*J. Computational Phys.*, v. 1, 1966, pp. 198-222.**[2]**B. Eilon, D. Gottlieb & G. Zwas, "Numerical stabilizers and computing time for second order accurate schemes,"*J. Computational Phys.*, v. 9, 1972, pp. 387-397. MR**0300471 (45:9517)****[3]**K. O. Friedrichs & P. D. Lax, "Systems of conservation equations with a convex extension,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 68, 1971, pp. 1686-1688. MR**44**#3016. MR**0285799 (44:3016)****[4]**S. K. Godunov, "The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics,"*Uspehi Mat. Nauk*, v. 17, 1962, no. 3 (105), pp. 147-158 =*Russian Math. Surveys*, v. 17, 1962, no. 3, pp. 145-156. MR**27**#5445. MR**0155511 (27:5445)****[5]**A. Kasahara & D. Houghton, "An example of nonunique discontinuous solutions in fluid dynamics,"*J. Computational Phys.*, v. 4, 1969, pp. 377-388.**[6]**P. D. Lax & B. Wendroff, "Systems of conservation laws,"*Comm. Pure Appl. Math.*, v. 13, 1960, pp. 217-237. MR**22**#11523. MR**0120774 (22:11523)****[7]**P. D. Lax & B. Wendroff, "Difference schemes for hyperbolic equations with higher order accuracy,"*Comm. Pure Appl. Math.*, v. 17, 1964, pp. 381-398. MR**30**#722. MR**0170484 (30:722)****[8]**R. D. Richtmyer & K. W. Morton,*Difference Methods for Initial Value Problems*, 2nd ed., Interscience, New York, 1967. MR**36**#3515. MR**0220455 (36:3515)****[9]**G. W. Strang, "Accurate partial difference methods. II: Nonlinear problems,"*Numer. Math.*, v. 6, 1964, pp. 37-46. MR**29**#4215. MR**0166942 (29:4215)****[10]**G. W. Strang, "On the construction and comparison of difference schemes, "*SIAM J. Numer. Anal.*, v. 5, 1968, pp. 506-517. MR**38**#4057. MR**0235754 (38:4057)****[11]**G. Zwas, "On two step Lax-Wendroff methods in several dimensions,"*Numer. Math.*(To appear.) MR**0323126 (48:1484)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0329279-3

Article copyright:
© Copyright 1973
American Mathematical Society