Convergence for a vortex method for solving Euler's equation

Author:
Theodore E. Dushane

Journal:
Math. Comp. **27** (1973), 719-728

MSC:
Primary 76.65

DOI:
https://doi.org/10.1090/S0025-5718-1973-0339675-6

MathSciNet review:
0339675

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a new vortex approximation for solving the initial-value problem for the Euler equations in two dimensions. We assume there exists a smooth solution to these equations and that the vorticity has compact support. Then we show that our approximation to the velocity field converges uniformly in space and time for a short time interval.

**[1]**G. K. Batchellor,*An Introduction to Fluid Dynamics*, Cambridge Univ. Press, Cambridge, 1967.**[2]**C. K. Birdsall, A. B. Langdon & H. Okuda, "Finite size particle physics applied to plasma simulation,"*Methods in Computational Physics*, v. 9, 1970, pp. 241-258.**[3]**A. J. Chorin, "On the convergence of discrete approximations to the Navier-Stokes equations,"*Math. Comp.*, v. 23, 1969, pp. 341-353. MR**39**#3724. MR**0242393 (39:3724)****[4]**A. J. Chorin, "Computational aspects of the turbulence problem,"*Proc. Second International Conference on Numerical Methods in Fluid Dynamics*, Springer-Verlag, Berlin, 1970.**[5]**A. J. Chorin, "A vortex method for the study of rapid flows,"*Proc. Third International Conference on Numerical Methods in Fluid Dynamics*, Springer-Verlag, Berlin, 1973. MR**0479005 (57:18461)****[6]**A. J. Chorin, "Numerical study of slightly viscous flows." (To appear.) MR**0395483 (52:16280)****[7]**O. P. Christiansen, "Numerical simulation of hydrodynamics by the method of point vortices." (To appear.)**[8]**J. Glimm, "Solutions in the large for nonlinear hyperbolic systems of equations,"*Comm. Pure Appl. Math.*, v. 18, 1965, pp. 697-715. MR**33**#2976. MR**0194770 (33:2976)****[9]**A. Kržywicki & O. Ladyženskaja, "A grid method for the Navier-Stokes equations,"*Dokl. Akad. Nauk SSSR*, v. 167, 1966, pp. 309-311 =*Soviet Physics Dokl*. v. 11, 1966, pp. 212-213. MR**35**#2497. MR**0211619 (35:2497)****[10]**R. H. Levy & R. W. Hockney, "Computer experiments on low density crossed field electron beams,"*Phys. Fluids*, v. 11, 1968, pp. 766-771.**[11]**D. W. Moore, "The discrete approximation of a finite vortex sheet." (Preprint.)**[12]**L. Rosenhead, "The formation of vortices from a surface of discontinuity,"*Proc. Roy. Soc.*Ser. A, v. 134, 1932, pp. 170-192.**[13]**H. Takami,*A Numerical Experiment With Discrete-Vortex Approximation, With Reference to the Rolling Up of a Vortex Sheet*, Dept. of Aero. and Astro., Stanford Univ. Report SUDAER 202, Sept. 1964.

Retrieve articles in *Mathematics of Computation*
with MSC:
76.65

Retrieve articles in all journals with MSC: 76.65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1973-0339675-6

Keywords:
Vortex approximation,
Euler's equation,
two dimensions,
incompressible fluid flow,
convergence proof

Article copyright:
© Copyright 1973
American Mathematical Society