Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 27 (1973), 997-1007
DOI: https://doi.org/10.1090/S0025-5718-73-99693-2
Corrigendum: Math. Comp. 28 (1974), 887.
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. S. Burington, Handbook of Mathematical Tables and Formulas, Fourth edition, McGraw-Hill, New York, 1965. (See Math. Comp., v. 19, 1965, p. 503, RMT 72.) MR 0345741 (49:10472)
  • [1] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley, Reading, Mass., 1962, v. 1, p. 144. MR 0142796 (26:365a)
  • [2] G. N. Watson, "DuBois Reymond constants," Quart. J. Math., v. 4, 1933, pp. 140-146.
  • [1] M. I. Zhurina & L. N. Karmazina, Tablitsy funktsii Lezhandra $ {P_{ - {\text{I}}/2 + {\text{i}}\;\tau }}(x)$, Tom I, Akad. Nauk SSSR, Moscow, 1960. [See Math. Comp., v. 16, 1962, pp. 253-254, RMT 22.]
  • [2] M. I. Zhurina & L. N. Karmazina, Tablitsy funktsii Lezhandra $ {P_{ - 1/2 + i\;\tau }}(x)$, Tom II, Akad. Nauk SSSR, Moscow, 1962. [See Math. Comp., v. 18, 1964, pp. 521-522, RMT 79 (a); ibid., v. 19, 1965, p. 692, RMT 123, for a brief review of English translations of volumes 1 and 2.]
  • [3] M. I. Zhurina & L. N. Karmazina, Tablitsy i formuly dlia sfericheskikh funktsii $ {P^m}_{ - 1/2 + i\;\tau }(z)$, Akad. Nauk SSSR, Moscow, 1962. [See Math. Comp., v. 18, 1964, pp. 521-522, RMT 79 (b); ibid., v. 21, 1967, pp. 508-509, RMT 66, for a review of an English translation.]
  • [4] M. I. Zhurina & L. N. Karmazina, Tablitsy funktsii Lezhandra, Akad. Nauk SSSR, Moscow, 1963. MR 0153874 (27:3835)
  • [1] B. D. Fried & S. D. Conte, The Plasma Dispersion Function: The Hilbert Transform of the Gaussian, Academic Press, New York, 1961. (See Math. Comp., v. 17, 1963, pp. 94-95.) MR 0135916 (24:B1958)
  • [2] V. N. Faddeeva & N. M. Terent'ev, Tables of Values of the Function $ \omega (z) = {e^{ - {z^2}}}(1 + 2i{\pi ^{ - 1/2}}{\smallint _{{0^z}}}{e^{{t^2}}}dt)$, for Complex Argument, Pergamon Press, New York, 1961. (See Math. Comp., v. 16, 1962, p. 384.) MR 0122013 (22:12740)
  • [3] D. B. Hunter & T. Regan, "A note on the evaluation of the complementary error function," Math. Comp., v. 26, 1972, pp. 539-542. MR 0303685 (46:2821)
  • [1] H. E. Fettis & J. C. Caslin, Elliptic Functions for Complex Arguments, Report ARL 67-0001, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, January, 1967. (See Math. Comp., v. 22, 1968, pp. 230-231.)
  • [2] F. M. Henderson, Elliptic Functions with Complex Arguments, Univ. of Michigan Press, Ann Arbor, Mich., 1960. (See Math. Comp., v. 15, 1961, pp. 95, 96.) MR 0147675 (26:5189)
  • [1] P. Hagis, Jr., "A lower bound for the set of odd perfect numbers," Math. Comp., v. 27, 1973, pp. 951-953. MR 0325507 (48:3854)
  • [2] K. K. Norton, "Remarks on the number of factors of an odd perfect number," Acta Arith., v. 6, 1961, pp. 365-374. MR 0147434 (26:4950)
  • [3] B. Tuckerman, "A search procedure and lower bound for odd perfect numbers," Math. Comp., v. 27, 1973, pp. 943-949. MR 0325506 (48:3853)
  • [1] Peter Hagis, Jr., "A lower bound for the set of odd perfect numbers," Math. Comp., v. 27, 1973, pp. 951-953. MR 0325507 (48:3854)
  • [2] Peter Hagis, Jr., & Wayne L. McDaniel, "On the largest prime divisor of an odd perfect number," Math. Comp., v. 27, 1973, pp. 955-957. MR 0325508 (48:3855)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-73-99693-2
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society