Reduction Formulas for Multiple Series

By M. L. Glasser

Abstract. A simple procedure is given for reducing broad classes of multiple series to single series. Examples are given for double series.

Suppose that \(A_1, A_2 = A_3 \), where \(A_i \) is a function of \(u \) and possesses a series expansion \(A_i = \sum_n \phi_i(n, u) \). Then we have

\[
\sum_{m,n} \phi_1(n, u) \phi_2(m, u) = \sum_n \phi_3(n, u).
\]

If both sides of (1) are multiplied by some function \(f(u) \) and integrated over \(u \), we shall have formally

\[
\sum_{m,n} F_1(m, n) = \sum_n F_2(n).
\]

This rather trivial procedure can lead to some remarkable and useful results, as we shall illustrate by some examples.

If \(f \) and \(g \) are two analytic functions, then, upon multiplication of their Taylor series, we obtain

\[
\sum_{m,n=0}^\infty \frac{f^{(m)}(0) g^{(n)}(0)}{m! n!} F(m + n + 1) = \sum_{n=0}^\infty \frac{(fg)^{(n)}(0)}{n!} F(n + 1),
\]

where \(F \) is any Mellin transform.

From the theory of elliptic functions [1], we have the Fourier series

\[
\begin{align*}
(a) \quad & \text{cn}(2Kx/\pi) = (2\pi/kK) \sum_{n=0}^\infty q^{n+1/2}(1 + q^{2n+1})^{-1} \cos(2n + 1)x, \\
(b) \quad & (2K/\pi) \text{dn}(2Kx/\pi) = 1 + 4 \sum_{n=1}^\infty q^n(1 + q^{2n})^{-1} \cos 2nx, \\
(c) \quad & (2K/\pi) \text{cn}(2Kx/\pi) \text{dn}(2Kx/\pi) \\
& = (2\pi/kK) \sum_{n=0}^\infty (2n + 1)q^{n+1/2}(1 - q^{2n+1})^{-1} \cos(2n + 1)x,
\end{align*}
\]

where \(q = e^{-K'/K} \). If we now let \(K'/K = (2u/\pi) \), we find on multiplication of (4(a)) by (4(b)) that

\[
\sum_{m,n=0}^\infty \frac{\cos(2m + 2n + 1)x}{\cosh(2m + 1)u \cosh 2nu} = 2 \sum_{n=0}^\infty \frac{(2n + 1) \cos(2n + 1)x}{\sinh(2n + 1)u},
\]

Received September 8, 1972.

AMS (MOS) subject classifications (1970). Primary 40B05.

Key words and phrases. Multiple series, reduction formula.

Copyright © 1974, American Mathematical Society
where the addition theorem and evenness for the cosine have been used to simplify the left-hand side.

Next, we multiply both sides of (5) by some summable function \(f(x) \), with cosine transform \(F(y) \), and integrate over \(x \) between the limits 0 and \(\infty \). Thus, we have

\[
\sum_{m, n=-\infty}^{\infty} \frac{F(2m + 2n + 1)}{\cosh(2m + 1)u \cosh(2nu)} = 2 \sum_{n=0}^{\infty} \frac{(2n + 1)F(2n + 1)}{\sinh(2n + 1)u}.
\]

This remarkable result is valid for any summable function \(F(x) \).

For example, consider \(F_k(x) = 1 \) for \((2k + \frac{3}{2}) > |x|, 0 \) otherwise. Denoting the sum on the left-hand side of (6) by \(S_k \), we find that it can be written

\[
S_k = s_0 + s_1 + \cdots + s_k,
\]

where

\[
s_k = 4 \sum_{n=-\infty}^{\infty} [\cosh(4n + 2k + 1)u + \cosh(2k + 1)u]^{-1}.
\]

On the other hand, the sum on the right-hand side of (6) is finite and we have

\[
S_k = 2[\text{csch } u + 3 \text{ csch } 3u + \cdots + (2k + 1) \text{ csch}(2k + 1)u].
\]

Therefore, \(s_k = S_k - S_{k-1} = 2(2k + 1) \text{ csch}(2k + 1)u \) and, hence,

\[
\sum_{n=1}^{\infty} [\cosh(2nu) + \cosh(2k + 1)u]^{-1}
\]

\[
= \frac{1}{2}[(2k + 1) \text{ csch}(2k + 1)u - \frac{1}{2} \text{ sech}^2(k + \frac{1}{2})u], \quad k = 0, 1, 2, \ldots.
\]

In a similar way, we can derive

\[
\sum_{m, n=-\infty}^{\infty} \frac{F(m + n + 1) + F(m - n)}{\sinh(2m + 1)u \cosh(2n + 1)u} = 8 \sum_{n=1}^{\infty} \frac{nF(n)}{\cosh(2nu)},
\]

\[
\sum_{k, m, n=-\infty}^{\infty} \frac{F(k + m + n + 1) + F(k - m + n)}{\cosh(2ku) \cosh(2m + 1)u \sinh(2n + 1)u} = 8 \sum_{n=1}^{\infty} \frac{n^2F(n)}{\sinh(2nu)},
\]

where \(F \) is any sine transform (and hence odd).

Thus, taking \(F(1) = -F(-1) = 1, F(n) = 0, n \neq 1, \) in (12), we obtain the interesting double series

\[
\sum_{k, n=-\infty}^{\infty} \frac{\sinh(2k + n + 1)u}{\cosh(2ku) \sinh(2n + 1)u[\cosh 2(2k + 2n + 1)u + \cosh 4u]} = \text{csch}^2 2u.
\]

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201