Four large amicable pairs
Author:
H. J. J. te Riele
Journal:
Math. Comp. 28 (1974), 309312
MSC:
Primary 10A40; Secondary 1004
MathSciNet review:
0330033
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This note gives a report of systematic computer tests of Euler's rule and several ThabitibnKurrahrules, in search of large amicable pairs. The tests have yielded four amicable pairs, which are much larger than the largest amicable pair thus far known.
 [1]
J.
Alanen, O.
Ore, and J.
Stemple, Systematic computations on amicable
numbers, Math. Comp. 21 (1967), 242–245. MR 0222006
(36 #5058), http://dx.doi.org/10.1090/S00255718196702220067
 [2]
Walter
Borho, On Thabit ibn Kurrah’s formula
for amicable numbers, Math. Comp. 26 (1972), 571–578. MR 0313177
(47 #1732), http://dx.doi.org/10.1090/S00255718197203131774
 [3]
Edward
Brind Escott, Amicable numbers, Scripta Math.
12 (1946), 61–72. MR 0017293
(8,135a)
 [4]
L. Euler, De Numeris Amicabilibus, Leonhardi Euleri Opera Omnia, Teubner, Leipzig and Berlin, Ser. I, vol. 2, 1915, pp. 63162.
 [5]
Mariano
García, New amicable pairs, Scripta Math.
23 (1957), 167–171. MR 0098703
(20 #5158)
 [6]
Donald
E. Knuth, The art of computer programming. Vol. 2: Seminumerical
algorithms, AddisonWesley Publishing Co., Reading, Mass.LondonDon
Mills, Ont, 1969. MR 0286318
(44 #3531)
 [7]
Elvin
J. Lee, Amicable numbers and the bilinear
diophantine equation, Math. Comp. 22 (1968), 181–187. MR 0224543
(37 #142), http://dx.doi.org/10.1090/S00255718196802245439
 [8]
Elvin
J. Lee and Joseph
S. Madachy, The history and discovery of amicable numbers. I,
J. Recreational Math. 5 (1972), no. 2, 77–93.
MR
0446841 (56 #5165a)
 [9]
Elvin
J. Lee and Joseph
S. Madachy, The history and discovery of amicable numbers. II,
J. Recreational Math. 5 (1972), no. 3, 153–173.
MR
0446842 (56 #5165b)
 [10]
Elvin
J. Lee and Joseph
S. Madachy, The history and discovery of amicable numbers.
III, J. Recreational Math. 5 (1972), no. 4,
231–249. MR 0446843
(56 #5165c)
 [11]
D.
H. Lehmer, An extended theory of Lucas’ functions, Ann.
of Math. (2) 31 (1930), no. 3, 419–448. MR
1502953, http://dx.doi.org/10.2307/1968235
 [12]
Hans
Riesel, Lucasian criteria for the primality of
𝑁=ℎ⋅2ⁿ1, Math.
Comp. 23 (1969),
869–875. MR 0262163
(41 #6773), http://dx.doi.org/10.1090/S00255718196902621631
 [1]
 J. Alanen, O. Ore & J. Stemple, "Systematic computations on amicable numbers," Math. Comp., v. 21, 1967, pp. 242245. MR 36 #5058. MR 0222006 (36:5058)
 [2]
 W. Borho, "On Thabit ibn Kurrah's formula for amicable numbers," Math. Comp., v. 26, 1972, pp. 571578. MR 0313177 (47:1732)
 [3]
 E. B. Escott, "Amicable numbers," Scripta Math., v. 12, 1946, pp. 6172. MR 8, 135. MR 0017293 (8:135a)
 [4]
 L. Euler, De Numeris Amicabilibus, Leonhardi Euleri Opera Omnia, Teubner, Leipzig and Berlin, Ser. I, vol. 2, 1915, pp. 63162.
 [5]
 M. García, "New amicable pairs," Scripta Math., v. 23, 1957, pp. 167171. MR 20 #5158. MR 0098703 (20:5158)
 [6]
 D. E. Knuth, The art of computer programming. Vol. 2. Seminumerical Algorithms, AddisonWesley, Reading, Mass., 1969. MR 44 #3531. MR 0286318 (44:3531)
 [7]
 E. J. Lee, "Amicable numbers and the bilinear diophantine equation," Math. Comp., v. 22, 1968, pp. 181187. MR 37 #142. MR 0224543 (37:142)
 [8]
 E. J. Lee & J. S. Madachy, "The history and discovery of amicable numberspart 1," J. Recreational Math., v. 5, 1972, pp. 7793. MR 0446841 (56:5165a)
 [9]
 E. J. Lee & J. S. Madachy, "The history and discovery of amicable numberspart 2," J. Recreational Math., v. 5, 1972, pp. 153173. MR 0446842 (56:5165b)
 [10]
 E. J. Lee & J. S. Madachy, "The history and discovery of amicable numberspart 3," J. Recreational Math., v. 5, 1972, pp. 231249. MR 0446843 (56:5165c)
 [11]
 D. H. Lehmer, "An extended theory of Lucas' functions," Ann. of Math., v. 31, 1930, pp. 419448. MR 1502953
 [12]
 H. Riesel, "Lucasian criteria for the primality of ," Math. Comp., v. 23, 1969, pp. 869875. MR 41 #6773. MR 0262163 (41:6773)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A40,
1004
Retrieve articles in all journals
with MSC:
10A40,
1004
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403300338
PII:
S 00255718(1974)03300338
Keywords:
Amicable numbers,
LucasLehmer test
Article copyright:
© Copyright 1974
American Mathematical Society
