Four large amicable pairs

Author:
H. J. J. te Riele

Journal:
Math. Comp. **28** (1974), 309-312

MSC:
Primary 10A40; Secondary 10-04

DOI:
https://doi.org/10.1090/S0025-5718-1974-0330033-8

MathSciNet review:
0330033

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note gives a report of systematic computer tests of Euler's rule and several Thabit-ibn-Kurrah-rules, in search of large amicable pairs. The tests have yielded four amicable pairs, which are much larger than the largest amicable pair thus far known.

**[1]**J. Alanen, O. Ore & J. Stemple, "Systematic computations on amicable numbers,"*Math. Comp.*, v. 21, 1967, pp. 242-245. MR**36**#5058. MR**0222006 (36:5058)****[2]**W. Borho, "On Thabit ibn Kurrah's formula for amicable numbers,"*Math. Comp.*, v. 26, 1972, pp. 571-578. MR**0313177 (47:1732)****[3]**E. B. Escott, "Amicable numbers,"*Scripta Math.*, v. 12, 1946, pp. 61-72. MR**8**, 135. MR**0017293 (8:135a)****[4]**L. Euler,*De Numeris Amicabilibus*, Leonhardi Euleri Opera Omnia, Teubner, Leipzig and Berlin, Ser. I, vol. 2, 1915, pp. 63-162.**[5]**M. García, "New amicable pairs,"*Scripta Math.*, v. 23, 1957, pp. 167-171. MR**20**#5158. MR**0098703 (20:5158)****[6]**D. E. Knuth,*The art of computer programming*. Vol. 2.*Seminumerical Algorithms*, Addison-Wesley, Reading, Mass., 1969. MR**44**#3531. MR**0286318 (44:3531)****[7]**E. J. Lee, "Amicable numbers and the bilinear diophantine equation,"*Math. Comp.*, v. 22, 1968, pp. 181-187. MR**37**#142. MR**0224543 (37:142)****[8]**E. J. Lee & J. S. Madachy, "The history and discovery of amicable numbers--part 1,"*J. Recreational Math.*, v. 5, 1972, pp. 77-93. MR**0446841 (56:5165a)****[9]**E. J. Lee & J. S. Madachy, "The history and discovery of amicable numbers--part 2,"*J. Recreational Math.*, v. 5, 1972, pp. 153-173. MR**0446842 (56:5165b)****[10]**E. J. Lee & J. S. Madachy, "The history and discovery of amicable numbers--part 3,"*J. Recreational Math.*, v. 5, 1972, pp. 231-249. MR**0446843 (56:5165c)****[11]**D. H. Lehmer, "An extended theory of Lucas' functions,"*Ann. of Math.*, v. 31, 1930, pp. 419-448. MR**1502953****[12]**H. Riesel, "Lucasian criteria for the primality of ,"*Math. Comp.*, v. 23, 1969, pp. 869-875. MR**41**#6773. MR**0262163 (41:6773)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
10-04

Retrieve articles in all journals with MSC: 10A40, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0330033-8

Keywords:
Amicable numbers,
Lucas-Lehmer test

Article copyright:
© Copyright 1974
American Mathematical Society