On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations

Authors:
A. Prothero and A. Robinson

Journal:
Math. Comp. **28** (1974), 145-162

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1974-0331793-2

MathSciNet review:
0331793

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The stiffness in some systems of nonlinear differential equations is shown to be characterized by single stiff equations of the form

*S*-stability property is introduced for this problem, generalizing the concept of

*A*-stability. A set of stiffly accurate one-step methods is identified and the concept of stiff order is defined in the limit . These additional properties are enumerated for several classes of

*A*-stable one-step methods, and are used to predict the behaviour of numerical solutions to stiff nonlinear initial-value problems obtained using such methods. A family of methods based on a compromise between accuracy and stability considerations is recommended for use on practical problems.

**[1]**G. G. Dahlquist, "A special stability problem for linear multistep methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 3, 1963, pp. 27-43. MR**30**#715. MR**0170477 (30:715)****[2]**O. B. Widlund, "A note on unconditionally stable linear multistep methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 7, 1967, pp. 65-70. MR**35**#6373. MR**0215533 (35:6373)****[3]**S. P. Norsett, "A criterion for -stability of linear multistep methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 9, 1969, pp. 259-263. MR**41**#1227. MR**0256571 (41:1227)****[4]**C. W. Gear,*The Automatic Integration of Stiff Ordinary Differential Equations*(*With Discussion*), Proc. IFIP Congress Information Processing 68 (Edinburgh 1968), vol. 1; Mathematics, Software, North-Holland, Amsterdam, 1969, pp. 187-193. MR**41**#4808. MR**0260180 (41:4808)****[5]**C. E. Treanor, "A method for the numerical integration of coupled first-order differential equations with greatly different time constants,"*Math. Comp.*, v. 20, 1966, pp. 39-45. MR**33**#889. MR**0192664 (33:889)****[6]**S. P. Norsett,*An A-Stable Modification of the Adams-Bashforth Methods*, Conf. on the Numerical Solution of Differential Equations (Dundee, Scotland, June 1969), Springer, Berlin, 1969, pp. 214-219. MR**42**#2673. MR**0267771 (42:2673)****[7]**B. L. Ehle, "High-order*A*-stable methods for the numerical solution of systems of differential equations,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 8, 1968, pp. 276-278. MR**39**#1119. MR**0239762 (39:1119)****[8]**B. L. Ehle,*On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems*, Report CSRR 2010, University of Waterloo, Department of Applied Analysis and Computer Science, March 1969.**[9]**O. Axelsson, "A class of*A*-stable methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 9, 1969, pp. 185-199. MR**40**#8266. MR**0255059 (40:8266)****[10]**O. Axelsson, "A note on a class of strongly*A*-stable methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 12, 1972, pp. 1-4. MR**0315896 (47:4445)****[11]**F. H. Chipman, "*A*-stable Runge-Kutta processes,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 11, 1971, pp. 384-388. MR**45**#4648. MR**0295582 (45:4648)****[12]**F. H. Chipman,*Numerical Solution of Initial Value Problems Using A-Stable Runge-Kutta Processes*, Report CSRR 2042, University of Waterloo, Department of Applied Analysis and Computer Science, June 1971.**[13]**H. A. Watts & L. F. Shampine, "*A*-stable block implicit one-step methods,"*Nordisk Tidskr. Informationsbehandling*(*BIT*), v. 12, 1972, pp. 252-266. MR**0307483 (46:6603)****[14]**M. P. Halstead, A. Prothero & C. P. Quinn, "A mathematical model of the cool-flame oxidation of acetaldehyde,"*Proc. Roy. Soc. London Ser. A*, v. 322, 1971, pp. 377-403.**[15]**J. C. Butcher, "Implicit Runge-Kutta processes,"*Math. Comp.*, v. 18, 1964, pp. 50-64. MR**28**#2641. MR**0159424 (28:2641)****[16]**J. H. Seinfeld, L. Lapidus & M. Hwang, "Review of numerical integration techniques for stiff ordinary differential equations,"*Ind. Eng. Chem. Fundamentals*, v. 9, 1970, pp. 266-275.**[17]**A. R. Gourlay, "A note on trapezoidal methods for the solution of initial value problems,"*Math. Comp.*, v. 24, 1970, pp. 629-633. MR**43**#1433. MR**0275680 (43:1433)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0331793-2

Keywords:
Stiff system of ordinary differential equations,
implicit one-step methods,
*A*-stability,
*S*-stability,
stiffly accurate methods,
stiff order

Article copyright:
© Copyright 1974
American Mathematical Society