A note on congruent numbers
Authors:
Ronald Alter and Thaddeus B. Curtz
Journal:
Math. Comp. 28 (1974), 303305
MSC:
Primary 10B05
Corrigendum:
Math. Comp. 30 (1976), 198.
MathSciNet review:
0337758
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An integer a is called a congruent number if and only if there are positive integer solutions to the system of equations In this note congruent numbers are discussed and a table of known squarefree congruent numbers less than 1000 is exhibited.
 [1]
R. Alter, T. B. Curtz & K. K. Kubota, Remarks and Results on Congruent Numbers, Proc. Third Southeastern Conference on Combinatorics, Graph Theory and Computing, 1972, pp. 2735. MR 0349554 (50:2047)
 [2]
L. Bastien, "Nombres congruents," Intermédiare des Math., v. 22, 1915, pp. 231232.
 [3]
L. E. Dickson, History of the Theory of Numbers. Vol. II, Carnegie Institute of Washington, 1920.
 [4]
A. Gérardin, "Nombres congruents," Intermédiare des Math., v. 22, 1915, pp. 5253.
 [5]
L. J. Mordell, Diophantine Equations, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969. MR 40 #2600. MR 0249355 (40:2600)
 [6]
J. V. Uspensky & M. A. Heaslet, Elementary Number Theory, McGrawHill, New York, 1939. MR 1, 38.
 [1]
 R. Alter, T. B. Curtz & K. K. Kubota, Remarks and Results on Congruent Numbers, Proc. Third Southeastern Conference on Combinatorics, Graph Theory and Computing, 1972, pp. 2735. MR 0349554 (50:2047)
 [2]
 L. Bastien, "Nombres congruents," Intermédiare des Math., v. 22, 1915, pp. 231232.
 [3]
 L. E. Dickson, History of the Theory of Numbers. Vol. II, Carnegie Institute of Washington, 1920.
 [4]
 A. Gérardin, "Nombres congruents," Intermédiare des Math., v. 22, 1915, pp. 5253.
 [5]
 L. J. Mordell, Diophantine Equations, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969. MR 40 #2600. MR 0249355 (40:2600)
 [6]
 J. V. Uspensky & M. A. Heaslet, Elementary Number Theory, McGrawHill, New York, 1939. MR 1, 38.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10B05
Retrieve articles in all journals
with MSC:
10B05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403377589
PII:
S 00255718(1974)03377589
Keywords:
Congruent numbers,
Diophantine equation
Article copyright:
© Copyright 1974
American Mathematical Society
