A note on congruent numbers

Authors:
Ronald Alter and Thaddeus B. Curtz

Journal:
Math. Comp. **28** (1974), 303-305

MSC:
Primary 10B05

DOI:
https://doi.org/10.1090/S0025-5718-1974-0337758-9

Corrigendum:
Math. Comp. **30** (1976), 198.

MathSciNet review:
0337758

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An integer *a* is called a congruent number if and only if there are positive integer solutions to the system of equations

**[1]**Ronald Alter, Thaddeus B. Curtz, and K. K. Kubota,*Remarks and results on congruent numbers*, Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), Florida Atlantic Univ., Boca Raton, Fla., 1972, pp. 27–35. MR**0349554****[2]**L. Bastien, "Nombres congruents,"*Intermédiare des Math.*, v. 22, 1915, pp. 231-232.**[3]**L. E. Dickson,*History of the Theory of Numbers*. Vol. II, Carnegie Institute of Washington, 1920.**[4]**A. Gérardin, "Nombres congruents,"*Intermédiare des Math.*, v. 22, 1915, pp. 52-53.**[5]**L. J. Mordell,*Diophantine equations*, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR**0249355****[6]**J. V. Uspensky & M. A. Heaslet,*Elementary Number Theory*, McGraw-Hill, New York, 1939. MR**1**, 38.

Retrieve articles in *Mathematics of Computation*
with MSC:
10B05

Retrieve articles in all journals with MSC: 10B05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0337758-9

Keywords:
Congruent numbers,
Diophantine equation

Article copyright:
© Copyright 1974
American Mathematical Society