Confluent expansions for functions of two variables

Author:
V. L. Deshpande

Journal:
Math. Comp. **28** (1974), 605-611

MSC:
Primary 33A30

DOI:
https://doi.org/10.1090/S0025-5718-1974-0340657-X

MathSciNet review:
0340657

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper, J. L. Fields established four theorems giving confluent expansions for functions of one variable. In the present paper, we extended one theorem of Fields for functions of two variables. The usefulness of the theorem is illustrated by obtaining known and hitherto unknown transformations for Appell functions and Horn functions.

**[1]**V. L. Deshpande, "Theorems involving confluent asymptotic expansions of functions of two variables,"*An. Univ. Timişoara Romania*, v. 8, 1970, fasc. 2, pp. 143-151. MR**0326029 (48:4375)****[2]**V. L. Deshpande, "Theorems on asymptotic confluent expansions for functions of two variables,"*J. Natur. Sci. and Math.*, v. 11, 1971, no. 1.**[3]**V. L. Deshpande & V. M. Bhise, "On asymptotic confluent expansions for functions of two variables,"*Nederl. Akad. Wetensch. Proc. Ser. A*, v. 75 =*Indag. Math.*, v. 34, 1972, no. 2. MR**0330526 (48:8863)****[4]**Jerry L. Fields, "Confluent expansions,"*Math. Comp.*, v. 21, 1967, pp. 189-197. MR**37**#479. MR**0224880 (37:479)****[5]**A. Erdélyi,*Higher Transcendental Functions. Vol.*I.*The Hypergeometric Function, Legendre Functions*, McGraw-Hill, New York, 1953. MR**15**, 419.**[6]**P. Appell & J. Kampé de Fériet,*Fonctions hypergéométriques et hypersphériques polynômes d'Hermite*, Gauthier-Villars, Paris, 1926.**[7]**F. G. Tricomi & A. Erdélyi, "The asymptotic expansion of a ratio of gamma functions,"*Pacific J. Math.*, v. 1, 1951, pp. 133-142. MR**13**, 343. MR**0043948 (13:343g)****[8]**E. D. Rainville,*Special Functions*, Macmillan, New York, 1960. MR**21**#6447. MR**0107725 (21:6447)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A30

Retrieve articles in all journals with MSC: 33A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0340657-X

Article copyright:
© Copyright 1974
American Mathematical Society