A stable algorithm for computing the inverse error function in the ``tail-end'' region

Author:
Henry E. Fettis

Journal:
Math. Comp. **28** (1974), 585-587

MSC:
Primary 65D20

Corrigendum:
Math. Comp. **29** (1975), 673-674.

Corrigendum:
Math. Comp. **29** (1975), 673.

MathSciNet review:
0341812

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An iterative algorithm, simple enough to be executed on a desk top automatic computer, is given for computing the inverse of the function for small values of *x*.

**[1]**J. R. Philip,*The function inverfc 𝜃*, Austral. J. Phys.**13**(1960), 13–20. MR**0118857****[2]**Anthony Strecok,*On the calculation of the inverse of the error function*, Math. Comp.**22**(1968), 144–158. MR**0223070**, 10.1090/S0025-5718-1968-0223070-2**[3]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1974-0341812-5

Keywords:
Inverse error function,
inverse probability integral,
error function,
probability integral

Article copyright:
© Copyright 1974
American Mathematical Society