A stable algorithm for computing the inverse error function in the ``tail-end'' region

Author:
Henry E. Fettis

Journal:
Math. Comp. **28** (1974), 585-587

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1974-0341812-5

Corrigendum:
Math. Comp. **29** (1975), 673-674.

Corrigendum:
Math. Comp. **29** (1975), 673.

MathSciNet review:
0341812

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An iterative algorithm, simple enough to be executed on a desk top automatic computer, is given for computing the inverse of the function for small values of *x*.

**[1]**J. R. Philip, "The function inverfc ,"*Austral. J. Phys.*, v. 13, 1960, pp. 13-20. MR**22**#9626. MR**0118857 (22:9626)****[2]**A. J. Strecok, "On the calculation of the inverse of the error function,"*Math. Comp.*, v. 22, 1968, pp. 144-158, MR**36**#6119. MR**0223070 (36:6119)****[3]**H. S. Wall,*Analytic Theory of Continued Fractions*, Van Nostrand, New York, 1948, p. 358. MR**10**, 32. MR**0025596 (10:32d)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0341812-5

Keywords:
Inverse error function,
inverse probability integral,
error function,
probability integral

Article copyright:
© Copyright 1974
American Mathematical Society