Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A stable algorithm for computing the inverse error function in the ``tail-end'' region

Author: Henry E. Fettis
Journal: Math. Comp. 28 (1974), 585-587
MSC: Primary 65D20
Corrigendum: Math. Comp. 29 (1975), 673-674.
Corrigendum: Math. Comp. 29 (1975), 673.
MathSciNet review: 0341812
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An iterative algorithm, simple enough to be executed on a desk top automatic computer, is given for computing the inverse of the function $ x = {\operatorname{erfc}}(y)$ for small values of x.

References [Enhancements On Off] (What's this?)

  • [1] J. R. Philip, "The function inverfc $ \theta $," Austral. J. Phys., v. 13, 1960, pp. 13-20. MR 22 #9626. MR 0118857 (22:9626)
  • [2] A. J. Strecok, "On the calculation of the inverse of the error function," Math. Comp., v. 22, 1968, pp. 144-158, MR 36 #6119. MR 0223070 (36:6119)
  • [3] H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 358. MR 10, 32. MR 0025596 (10:32d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

Keywords: Inverse error function, inverse probability integral, error function, probability integral
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society