Evaluation of a constant associated with a parking problem

Authors:
M. Lal and P. Gillard

Journal:
Math. Comp. **28** (1974), 561-564

MSC:
Primary 65D20

MathSciNet review:
0341814

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A constant associated with a random space filling problem is computed to 19D. This is achieved by numerically solving an integral-difference equation.

**[1]**Alfréd Rényi,*On a one-dimensional problem concerning random space filling*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**3**(1958), no. no 1/2, 109–127 (Hungarian, with Russian and English summaries). MR**0104284****[2]**A. Dvoretzky and H. Robbins,*On the “parking” problem*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**9**(1964), 209–225 (English, with Russian summary). MR**0173275****[3]**J. J. A. Beenakker,*The Differential-Difference Equation*, Ph.D. Thesis, Technische Hogeschool, Eindhoven, The Netherlands, 1966.**[4]**Ilona Palásti,*On some random space filling problems*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**5**(1960), 353–360 (English, with Russian summary). MR**0146947****[5]**Mohan Lal & Paul Gillard, "Numerical solution of two differential-difference equations on analytic theory of numbers,"*Conference on Numerical Solution of Differential Equations*, Lecture Notes in Math., vol. 109, Springer-Verlag, Berlin and New York, 1969, pp. 179-187.**[6]***Mathematical methods for digital computers*, John Wiley & Sons, Inc., New York-London, 1960. MR**0117906**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0341814-9

Keywords:
Differential-difference equation,
random space filling

Article copyright:
© Copyright 1974
American Mathematical Society