On semicardinal quadrature formulae

Authors:
I. J. Schoenberg and S. D. Silliman

Journal:
Math. Comp. **28** (1974), 483-497

MSC:
Primary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1974-0341825-3

MathSciNet review:
0341825

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper concerns the semicardinal quadrature formulae introduced in Part III of the reference [3]. These were the limiting forms of Sard's best quadrature formulae as the number of nodes increases indefinitely. Here we give a new derivation and characterization of these formulae. This derivation uses appropriate generating functions and also allows us to compute the coefficients very accurately.

**[1]**I. J. Schoenberg,*Cardinal interpolation and spline functions*, J. Approximation Theory**2**(1969), 167–206. MR**0257616****[2]**I. J. Schoenberg,*Cardinal interpolation and spline functions*, J. Approximation Theory**2**(1969), 167–206. MR**0257616****[3]**I. J. Schoenberg,*Cardinal interpolation and spline functions. VI. Semi-cardinal interpolation and quadrature formulae*, J. Analyse Math.**27**(1974), 159–204. MR**0493057**, https://doi.org/10.1007/BF02788646**[4]**I. J. Schoenberg,*Cardinal spline interpolation*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR**0420078****[5]**I. J. Schoenberg and S. D. Silliman,*On semi-cardinal quadrature formulae*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 461–467. MR**0393974****[6]**S. D. Silliman, "On complete semi-cardinal quadrature formulae." (To appear.)

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0341825-3

Article copyright:
© Copyright 1974
American Mathematical Society