Quadrature formulas for semi-infinite integrals

Authors:
Ravindra Kumar and M. K. Jain

Journal:
Math. Comp. **28** (1974), 499-503

MSC:
Primary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1974-0343549-5

Erratum:
Math. Comp. **56** (1991), 407.

MathSciNet review:
0343549

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Polynomials orthogonal on with regard to the weight function are obtained, recurrence relations are found and the differential equation, which is satisfied by them, is given. Formulas for weights and abscissas in the corresponding quadrature formula are given.

**[1]**W. M. Harper, "Quadrature formulas for infinite integrals,"*Math. Comp.*, v. 16, 1962, pp. 170-175. MR**26**#3185. MR**0145656 (26:3185)****[2]**F. B. Hildebrand,*Introduction to Numerical Analysis*, McGraw-Hill, New York, 1956, pp. 258-367. MR**17**, 788. MR**0075670 (17:788d)****[3]**A. H. Stroud & Don Secrest,*Gaussian Quadrature Formulas*, Prentice-Hall, Englewood Cliffs, N.J., 1966, p. 254. MR**34**#2185. MR**0202312 (34:2185)****[4]**G. Szegö,*Orthogonal Polynomials*, 2nd rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959, pp. 58-72. MR**21**#5029. MR**0106295 (21:5029)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0343549-5

Keywords:
Orthogonal polynomials,
weight function,
recurrence relation,
quadrature formula,
weight coefficients,
error

Article copyright:
© Copyright 1974
American Mathematical Society