Irregular prime divisors of the Bernoulli numbers

Author:
Wells Johnson

Journal:
Math. Comp. **28** (1974), 653-657

MSC:
Primary 10A40; Secondary 12A35, 12A50

DOI:
https://doi.org/10.1090/S0025-5718-1974-0347727-0

MathSciNet review:
0347727

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If *p* is an irregular prime, , then the indices 2*n* for which the Bernoulli quotients are divisible by are completely characterized. In particular, it is always true that and that if *(p,2n)* is an irregular pair. As a result, we obtain another verification that the cyclotomic invariants of Iwasawa all vanish for primes .

**[1]**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****[2]**L. Carlitz,*Note on irregular primes*, Proc. Amer. Math. Soc.**5**(1954), 329–331. MR**0061124**, https://doi.org/10.1090/S0002-9939-1954-0061124-6**[3]**Kenkichi Iwasawa,*On some invariants of cyclotomic fields*, Amer. J. Math. 80 (1958), 773-783; erratum**81**(1958), 280. MR**0124317****[4]**Kenkichi Iwasawa and Charles C. Sims,*Computation of invariants in the theory of cyclotomic fields*, J. Math. Soc. Japan**18**(1966), 86–96. MR**0202700**, https://doi.org/10.2969/jmsj/01810086**[5]**Wells Johnson,*On the vanishing of the Iwasawa invariant 𝜇_{𝑝} for 𝑝<8000*, Math. Comp.**27**(1973), 387–396. MR**0384748**, https://doi.org/10.1090/S0025-5718-1973-0384748-5**[6]**Emma Lehmer,*On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson*, Ann. of Math. (2)**39**(1938), no. 2, 350–360. MR**1503412**, https://doi.org/10.2307/1968791**[7]**Tauno Metsänkylä,*Note on the distribution of irregular primes*, Ann. Acad. Sci. Fenn. Ser. A I No.**492**(1971), 7. MR**0274403****[8]**Hugh L. Montgomery,*Distribution of irregular primes*, Illinois J. Math.**9**(1965), 553–558. MR**0181633****[9]**F. Pollaczek,*Über die irregulären Kreiskörper der 𝑙-ten und 𝑙²-ten Einheitswurzeln*, Math. Z.**21**(1924), no. 1, 1–38 (German). MR**1544682**, https://doi.org/10.1007/BF01187449**[10]**J. Uspensky & M. Heaslet,*Elementary Number Theory*, McGraw-Hill, New York, 1939. MR**1**, 38.**[11]**H. S. Vandiver, "Is there an infinity of regular primes?,"*Scripta Math.*, v. 21, 1955, pp. 306-309.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
12A35,
12A50

Retrieve articles in all journals with MSC: 10A40, 12A35, 12A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0347727-0

Keywords:
Bernoulli numbers,
irregular primes,
cyclotomic invariants

Article copyright:
© Copyright 1974
American Mathematical Society