Highorder finitedifference methods for Poisson's equation
Author:
H. J. van Linde
Journal:
Math. Comp. 28 (1974), 369391
MSC:
Primary 65N05
MathSciNet review:
0362936
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Finitedifference approximations to the three boundary value problems for Poisson's equation are given with discretization errors of for the mixed boundary value problem, for the Neumann problem and for the Dirichlet problem, respectively. These error bounds are an improvement upon similar results obtained by Bramble and Hubbard; moreover, all resulting coefficient matrices are of positive type.
 [1]
J. H. Bramble & B. E. Hubbard, "On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation," Numer. Math., v. 4, 1962, pp. 313327. MR 26 #7157. MR 0149672 (26:7157)
 [2]
J. H. Bramble & B. E. Hubbard, "A finite difference analogue of the Neumann problem for Poisson's equation," J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal., v. 2, 1965, pp. 114. MR 32 #8516. MR 0191107 (32:8516)
 [3]
J. H. Bramble & B. E. Hubbard, "Approximation of solutions of mixed boundary value problems for Poisson's equation by finite differences," J. Assoc. Comput. Mach., v. 12, 1965, pp. 114123. MR 30 #1615. MR 0171384 (30:1615)
 [4]
H. van Linde, HighOrder Finite Difference Methods for Poisson's Equation, Thesis, Groningen, 1971.
 [5]
G. H. Shortley & R. Weller, "The numerical solution of Laplace's equation," J. Appl. Phys., v. 9, 1938, pp. 334348.
 [6]
J. H. Bramble & B. E. Hubbard, "On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of nonnegative type," J. Mathematical Phys., v. 43, 1964, pp. 117132. MR 28 #5566. MR 0162367 (28:5566)
 [7]
R. S. Varga, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N.J., 1962. MR 28 #1725. MR 0158502 (28:1725)
 [8]
E. Batschelet, "Über die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen," Z. Angew. Math. Phys., v. 3, 1952, pp. 165193. MR 15, 747. MR 0060912 (15:747b)
 [9]
M. Rockoff, "On the numerical solution of finite difference approximations which are not of positive type," Notices Amer. Math. Soc., v. 10, 1963, p. 108. Abstract #597169.
 [1]
 J. H. Bramble & B. E. Hubbard, "On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation," Numer. Math., v. 4, 1962, pp. 313327. MR 26 #7157. MR 0149672 (26:7157)
 [2]
 J. H. Bramble & B. E. Hubbard, "A finite difference analogue of the Neumann problem for Poisson's equation," J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal., v. 2, 1965, pp. 114. MR 32 #8516. MR 0191107 (32:8516)
 [3]
 J. H. Bramble & B. E. Hubbard, "Approximation of solutions of mixed boundary value problems for Poisson's equation by finite differences," J. Assoc. Comput. Mach., v. 12, 1965, pp. 114123. MR 30 #1615. MR 0171384 (30:1615)
 [4]
 H. van Linde, HighOrder Finite Difference Methods for Poisson's Equation, Thesis, Groningen, 1971.
 [5]
 G. H. Shortley & R. Weller, "The numerical solution of Laplace's equation," J. Appl. Phys., v. 9, 1938, pp. 334348.
 [6]
 J. H. Bramble & B. E. Hubbard, "On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of nonnegative type," J. Mathematical Phys., v. 43, 1964, pp. 117132. MR 28 #5566. MR 0162367 (28:5566)
 [7]
 R. S. Varga, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N.J., 1962. MR 28 #1725. MR 0158502 (28:1725)
 [8]
 E. Batschelet, "Über die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen," Z. Angew. Math. Phys., v. 3, 1952, pp. 165193. MR 15, 747. MR 0060912 (15:747b)
 [9]
 M. Rockoff, "On the numerical solution of finite difference approximations which are not of positive type," Notices Amer. Math. Soc., v. 10, 1963, p. 108. Abstract #597169.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N05
Retrieve articles in all journals
with MSC:
65N05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403629362
PII:
S 00255718(1974)03629362
Article copyright:
© Copyright 1974
American Mathematical Society
