Semidiscrete least-squares methods for second order parabolic problems with nonhomogenous data

Author:
J. Thomas King

Journal:
Math. Comp. **28** (1974), 405-411

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373323-5

MathSciNet review:
0373323

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, Bramble and Thomée proposed semidiscrete least-squares methods for the heat equation. In this paper we extend these methods to variable coefficient parabolic operators with nonhomogeneous equations and boundary conditions.

**[1]**S. Agmon,*Lectures on Elliptic Boundary Value Problems*, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR**31**#2504. MR**0178246 (31:2504)****[2]**I. Babuška,*Approximation by Hill Functions*, University of Maryland Technical Note BN-648, 1970.**[3]**J. H. Bramble & A. H. Schatz, "Rayleigh-Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions,"*Comm. Pure Appl. Math.*, v. 23, 1970, pp. 653-675. MR**42**#2690. MR**0267788 (42:2690)****[4]**J. H. Bramble & S. R. Hilbert, "Bounds for a class of linear functionals with applications to Hermite interpolation,"*Numer. Math.*, v. 16, 1970, pp. 362-369. MR**44**#7704. MR**0290524 (44:7704)****[5]**J. H. Bramble & S. R. Hilbert, "Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation,"*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 112-124. MR**41**#7819. MR**0263214 (41:7819)****[6]**J. H. Bramble & V. Thomée, "Semidiscrete least-squares methods for a parabolic boundary value problem,"*Math. Comp.*, v. 26, 1972, pp. 633-648. MR**0349038 (50:1532)****[7]**J. H. Bramble & M. Zlamal, "Triangular elements in the finite element method,"*Math. Comp.*, v. 24, 1970, pp. 809-820. MR**43**#8250. MR**0282540 (43:8250)****[8]**J. Douglas & T. Dupont, "Galerkin methods for parabolic equations,"*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 575-626. MR**43**#2863. MR**0277126 (43:2863)****[9]**S. Hilbert,*Numerical Methods for Elliptic Boundary Value Problems*, Doctoral Thesis, University of Maryland, College Park, Md., 1969.**[10]**J. T. King, "The approximate solution of parabolic initial-boundary value problems by weighted least-squares methods,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 215-229. MR**0305626 (46:4756)****[11]**O. A. Ladyženskaja, V. A. Solonnikov & N. N. Ural'ceva,*Linear and Quasilinear Equations of Parabolic Type*, "Nauka", Moscow, 1967; English transl., Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R.I., 1968. MR**39**#3159a, b. MR**0241822 (39:3159b)****[12]**H. S. Price & R. S. Varga,*Error Bounds for Semidiscrete Approximations of Parabolic Problems with Applications to Petroleum Reservoir Mechanics*, SIAM-AMS Proc., vol. II, Amer. Math. Soc., Providence, R.I., 1970, pp. 74-94. MR**42**#1358. MR**0266452 (42:1358)****[13]**M. H. Schultz, "Approximation theory of multivariate spline functions in Sobolev spaces,"*SIAM J. Numer. Anal.*, v. 6, 1969, pp. 570-582. MR**41**#7823. MR**0263218 (41:7823)****[14]**B. Swartz & B. Wendroff, "Generalized finite difference schemes,"*Math. Comp.*, v. 23, 1969, pp. 37-49. MR**39**#1125. MR**0239768 (39:1125)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373323-5

Keywords:
Semidiscrete least-squares method,
error analysis,
parabolic equation

Article copyright:
© Copyright 1974
American Mathematical Society