Semidiscrete least-squares methods for second order parabolic problems with nonhomogenous data

Author:
J. Thomas King

Journal:
Math. Comp. **28** (1974), 405-411

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373323-5

MathSciNet review:
0373323

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently, Bramble and Thomée proposed semidiscrete least-squares methods for the heat equation. In this paper we extend these methods to variable coefficient parabolic operators with nonhomogeneous equations and boundary conditions.

**[1]**Shmuel Agmon,*Lectures on elliptic boundary value problems*, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR**0178246****[2]**I. Babuška,*Approximation by Hill Functions*, University of Maryland Technical Note BN-648, 1970.**[3]**James H. Bramble and Alfred H. Schatz,*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**0267788**, https://doi.org/10.1002/cpa.3160230408**[4]**J. H. Bramble and S. R. Hilbert,*Bounds for a class of linear functionals with applications to Hermite interpolation*, Numer. Math.**16**(1970/1971), 362–369. MR**0290524**, https://doi.org/10.1007/BF02165007**[5]**J. H. Bramble and S. R. Hilbert,*Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation*, SIAM J. Numer. Anal.**7**(1970), 112–124. MR**0263214**, https://doi.org/10.1137/0707006**[6]**James H. Bramble and Vidar Thomée,*Semidiscrete least-squares methods for a parabolic boundary value problem*, Math. Comp.**26**(1972), 633–648. MR**0349038**, https://doi.org/10.1090/S0025-5718-1972-0349038-4**[7]**James H. Bramble and Miloš Zlámal,*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**0282540**, https://doi.org/10.1090/S0025-5718-1970-0282540-0**[8]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations*, SIAM J. Numer. Anal.**7**(1970), 575–626. MR**0277126**, https://doi.org/10.1137/0707048**[9]**S. Hilbert,*Numerical Methods for Elliptic Boundary Value Problems*, Doctoral Thesis, University of Maryland, College Park, Md., 1969.**[10]**J. Thomas King,*The approximate solution of parabolic initial boundary value problems by weighted least-squares methods*, SIAM J. Numer. Anal.**9**(1972), 215–229. MR**0305626**, https://doi.org/10.1137/0709020**[11]**O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva,*Linear and quasilinear equations of parabolic type*, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). MR**0241822****[12]**Harvey S. Price and Richard S. Varga,*Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR**0266452****[13]**Martin H. Schultz,*Approximation theory of multivariate spline functions in Sobolev spaces*, SIAM J. Numer. Anal.**6**(1969), 570–582. MR**0263218**, https://doi.org/10.1137/0706052**[14]**Blair Swartz and Burton Wendroff,*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**0239768**, https://doi.org/10.1090/S0025-5718-1969-0239768-7

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373323-5

Keywords:
Semidiscrete least-squares method,
error analysis,
parabolic equation

Article copyright:
© Copyright 1974
American Mathematical Society