Error analysis for polynomial evaluation

Author:
A. C. R. Newbery

Journal:
Math. Comp. **28** (1974), 789-793

MSC:
Primary 65D15

MathSciNet review:
0373227

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A floating-point error analysis is given for the evaluation of a real polynomial at a real argument by Horner's scheme. A computable error bound is derived. It is observed that when a polynomial has coefficients of constant sign or of strictly alternating sign, one cannot expect better accuracy by reformulating the problem in terms of Chebyshev polynomials.

**[1]**C. W. Clenshaw,*A note on the summation of Chebyshev series*, Math. Tables Aids Comput.**9**(1955), 118–120. MR**0071856**, 10.1090/S0025-5718-1955-0071856-0**[2]**F. L. Bauer,*Optimally scaled matrices*, Numer. Math.**5**(1963), 73–87. MR**0159412****[3]**W. M. Gentleman,*An error analysis of Goertzel’s (Watt’s) method for computing Fourier coefficients*, Comput. J.**12**(1969/1970), 160–165. MR**0243760****[4]**A. C. R. Newbery,*Error analysis for Fourier series evaluation*, Math. Comp.**27**(1973), 639–644. MR**0366072**, 10.1090/S0025-5718-1973-0366072-X**[5]**Cornelius Lanczos,*Applied analysis*, Prentice Hall, Inc., Englewood Cliffs, N. J., 1956. MR**0084175****[6]**John R. Rice,*On the conditioning of polynomial and rational forms*, Numer. Math.**7**(1965), 426–435. MR**0189283**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15

Retrieve articles in all journals with MSC: 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373227-8

Keywords:
Error analysis,
polynomials

Article copyright:
© Copyright 1974
American Mathematical Society