Error analysis for polynomial evaluation

Author:
A. C. R. Newbery

Journal:
Math. Comp. **28** (1974), 789-793

MSC:
Primary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373227-8

MathSciNet review:
0373227

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A floating-point error analysis is given for the evaluation of a real polynomial at a real argument by Horner's scheme. A computable error bound is derived. It is observed that when a polynomial has coefficients of constant sign or of strictly alternating sign, one cannot expect better accuracy by reformulating the problem in terms of Chebyshev polynomials.

**[1]**C. W. Clenshaw, "A note on the summation of Chebyshev series,"*MTAC*, v. 9, 1955, pp. 118-120. MR**17**, 194. MR**0071856 (17:194e)****[2]**F. L. Bauer, "Optimally scaled matrices,"*Numer. Math.*, v. 5, 1963, pp. 73-87. MR**28**#2629. MR**0159412 (28:2629)****[3]**W. M. Gentleman, "An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients,"*Comput. J.*, v 12, 1969/70, pp. 160-165. MR**39**#5081. MR**0243760 (39:5081)****[4]**A. C. R. Newbery, "Error analysis for Fourier series evaluation,"*Math. Comp.*, v. 27, 1973, pp. 639-644. MR**0366072 (51:2323)****[5]**C. Lanczos,*Applied Analysis*, Prentice-Hall, Englewood Cliffs, N. J., 1956. MR**18**, 823. MR**0084175 (18:823c)****[6]**J. R. Rice, "On the conditioning of polynomial and rational forms,"*Numer. Math.*, v. 7, 1965, pp. 426-435. MR**32**#6710. MR**0189283 (32:6710)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15

Retrieve articles in all journals with MSC: 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0373227-8

Keywords:
Error analysis,
polynomials

Article copyright:
© Copyright 1974
American Mathematical Society