Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The solution of systems of equations using the $ \varepsilon $-algorithm, and an application to boundary-value problems


Authors: Claude Brezinski and Alain C. Rieu
Journal: Math. Comp. 28 (1974), 731-741
MSC: Primary 65H10
DOI: https://doi.org/10.1090/S0025-5718-1974-0381288-5
MathSciNet review: 0381288
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the authors describe the properties of an algorithm to solve systems of nonlinear equations. The algorithm does not use any derivatives. The convergence of this algorithm is quadratic under quite mild conditions. This method can also be used to solve systems of linear equations with infinitely many solutions. The second part of the paper is devoted to the application of this algorithm to the solution of multipoint boundary-value problems for differential equations. A theorem of convergence is proved and various numerical examples are given.


References [Enhancements On Off] (What's this?)

  • [1] R. Alt, Méthodes A-Stables pour l'Intégration des Systèmes Différentiels Mal Conditionnés, Thèse, 3ième cycle, Paris.
  • [2] C. Brezinski, "Application de l' $ \varepsilon $-algorithme à la résolution des systèmes non linéaires," C. R. Acad. Sci. Paris Sér. A-B, v. 271, 1970, pp. A1174-A1177. MR 42 #7046. MR 0272165 (42:7046)
  • [3] C. Brezinski, "Sur un algorithme de résolution des systèmes non linéaires," C. R. Acad. Sci. Paris Sér. A-B, v. 272, 1971, pp. A145-A148. MR 43 #1410. MR 0275657 (43:1410)
  • [4] C. Brezinski, "Some results in the theory of the vector $ \varepsilon $-algorithm," Linear Algebra. v. 8, 1974, pp. 77-86. MR 0329220 (48:7562)
  • [5] J. Dieudonné, Fondaments de l'Analyse Moderne, Pure and Appl. Math., vol. 10, Academic Press, New York and London, 1964. MR 22 #11074.
  • [6] E. Gekeler, "On the solution of systems of equations by the epsilon algorithm of Wynn," Math. Comp., v. 26, 1972, pp. 427-436. MR 0314226 (47:2778)
  • [7] M. A. Goldberg, "A generalized invariant imbedding equation," J. Math. Anal. Appl., v. 33, 1971, pp. 518-528. MR 44 #7095a. MR 0289908 (44:7095a)
  • [8] T. R. Goodman & G. N. Lance, "The numerical integration of two-point boundary value problems," MTAC, v. 10, 1956, pp. 82-86. MR 18, 420. MR 0081553 (18:420a)
  • [9] P. Henrici, Elements of Numerical Analysis, Wiley, New York, 1964. MR 29 #4173. MR 0166900 (29:4173)
  • [10] J. F. Holt, "Numerical solution of nonlinear two-point boundary problems by finite difference methods," Comm. ACM, v. 7, 1964, pp. 366-373. MR 29 #5387. MR 0168123 (29:5387)
  • [11] J. B. McLeod, "A note on the $ \varepsilon $-algorithm," Computing (Arch. Elektron. Rechnen), v. 7, 1971, pp. 17-24. MR 44 #7693. MR 0290513 (44:7693)
  • [12] A. M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed., Pure and Appl. Math., vol. 9, Academic Press, New York, 1966. MR 35 #7575. MR 0216746 (35:7575)
  • [13] J. M. Ortega & W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. MR 42 #8686. MR 0273810 (42:8686)
  • [14] S. M. Roberts & J. S. Shipman, "Continuation in shooting methods for two-point boundary value problems," J. Math. Anal. Appl., v. 18, 1967, pp. 45-58. MR 34 #7029. MR 0207213 (34:7029)
  • [15] S. M. Roberts & J. S. Shipman, "Justification for the continuation method in two-point boundary value problems," J. Math. Anal. Appl., v. 21, 1968, pp. 23-30. MR 36 #3511. MR 0220451 (36:3511)
  • [16] L. Schwartz, Topologie Générale et Analyse Fonctionnelle, Hermann, Paris, 1970. MR 0467223 (57:7087)
  • [17] S. Yu. Ulm, "Extension of Steffensen's method for solving operator equations," U.S.S.R. Comput. Math. and Math. Phys., v. 4, 1964, pp. 159-165.
  • [18] P. Wynn, "Acceleration techniques for iterated vector and matrix problems," Math. Comp., v. 16, 1962, pp. 301-322. MR 26 #3176. MR 0145647 (26:3176)
  • [19] P. Wynn, Upon a Conjecture Concerning a Method for Solving Linear Equations, and Certain Other Matters, University of Wisconsin, Math. Res. Center Report No. 626, 1966.
  • [20] P. Wynn, "Accélération de la convergence de séries d'opérateurs en analyse numérique," C. R. Acad. Sci. Paris Sér. A-B, v. 276, 1973, pp. A803-A806. MR 0317519 (47:6066)
  • [21] P. Wynn, "Upon some continuous prediction algorithms. I, II," Calcolo 1972; Parts 3 and 4,v. 9, pp. 197-234 and pp. 235-278. MR 0362820 (50:15259a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65H10

Retrieve articles in all journals with MSC: 65H10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1974-0381288-5
Keywords: Solution of systems of equations, algorithm with quadratic convergence, boundary-value problem, differential equations
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society