The application of invariant imbedding to the solution of linear twopoint boundary value problems on an infinite interval
Author:
Dale W. Alspaugh
Journal:
Math. Comp. 28 (1974), 10051015
MSC:
Primary 65L10
MathSciNet review:
0351091
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Linear twopoint boundary value problems defined on an infinite domain are converted to initialvalue problems using invariant imbedding. The resulting Riccati equations are integrated numerically until the desired accuracy is obtained. Several criteria for determining the appropriate length of integration are presented. Several example problems are presented.
 [1]
T.
N. Robertson, The linear twopoint boundaryvalue
problem on an infinite interval, Math.
Comp. 25 (1971),
475–481. MR 0303742
(46 #2878), http://dx.doi.org/10.1090/S00255718197103037421
 [2]
D.
Alspaugh, H.
Kagiwada, and R.
Kalaba, Dynamic programming, invariant imbedding and thin beam
theory, Internat. J. Engrg. Sci. 7 (1969),
1117–1126 (English, with French, German, Italian and Russian
summaries). MR
0249018 (40 #2267)
 [3]
D.
W. Alspaugh, H.
H. Kagiwada, and R.
Kalaba, Application of invariant imbedding to the buckling of
columns, J. Computational Phys. 5 (1970),
56–69. MR
0251952 (40 #5177)
 [4]
D. W. ALSPAUGH & R. KALABA, Direct Derivation of Invariant Imbedding Equations for Beams from a Variational Principle, RAND Corp., RM5995PR, March 1969.
 [5]
Paul
B. Bailey and G.
Milton Wing, Some recent developments in invariant imbedding with
applications, J. Mathematical Phys. 6 (1965),
453–462. MR 0172663
(30 #2882)
 [6]
John
Casti and Robert
Kalaba, Imbedding methods in applied mathematics,
AddisonWesley Publishing Co., Reading, Mass.LondonAmsterdam, 1973.
Applied Mathematics and Computation, No. 2. MR 0471248
(57 #10985)
 [7]
Gunter
H. Meyer, Initial value methods for boundary value problems,
Academic Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon,
1973. Theory and application of invariant imbedding; Mathematics in Science
and Engineering, Vol. 100. MR 0488791
(58 #8301)
 [1]
 T. N. ROBERTSON, "The linear twopoint boundary value problem on an infinite interval," Math. Comp., v. 25, 1971, pp. 475481. MR 46 #2878. MR 0303742 (46:2878)
 [2]
 D. W. ALSPAUGH, H. H. KAGIWADA & R. KALABA, "Dynamic programming, invariant imbedding and thin beam theory," Internat. J. Engrg. Sci., v. 7, 1969, pp. 11171126. MR 40 #2267. MR 0249018 (40:2267)
 [3]
 D. W. ALSPAUGH, H. H. KAGIWADA & R. KALABA, "Application of invariant imbedding to the buckling of columns, J. Computational Phys., v. 5, 1970, pp. 5669. MR 40 #5177. MR 0251952 (40:5177)
 [4]
 D. W. ALSPAUGH & R. KALABA, Direct Derivation of Invariant Imbedding Equations for Beams from a Variational Principle, RAND Corp., RM5995PR, March 1969.
 [5]
 P. B. BAILEY & G. M. WING, "Some recent developments in invariant imbedding with applications," J. Mathematical Phys., v. 6, 1965, pp. 453462. MR 30 #2882. MR 0172663 (30:2882)
 [6]
 J. CASTI & R. KALABA, Imbedding Methods in Applied Mathematics, AddisonWesley, Reading, Mass., 1973. MR 0471248 (57:10985)
 [7]
 G. H. MEYER, Initial Value Methods for Boundary Value Problems, Academic Press, New York, 1974. MR 0488791 (58:8301)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10
Retrieve articles in all journals
with MSC:
65L10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403510910
PII:
S 00255718(1974)03510910
Keywords:
Boundary value problems,
invariant imbedding,
infinite domain
Article copyright:
© Copyright 1974
American Mathematical Society
