Existence questions for the problem of Chebyshev approximation by interpolating rationals

Authors:
G. D. Taylor and J. Williams

Journal:
Math. Comp. **28** (1974), 1097-1103

MSC:
Primary 41A50

DOI:
https://doi.org/10.1090/S0025-5718-1974-0355435-5

MathSciNet review:
0355435

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers a problem of Chebyshev approximation by interpolating rationals. Examples are given which show that best approximations may not exist. Sufficient conditions for existence are established, some of which can easily be checked in practice. Illustrative examples are also presented.

**[1]**N. I. AHIEZER,*Lectures on the Theory of Approximation*, Kharkov, 1940; English transl., Ungar, New York, 1956. MR**3**, 234;**20**#1872. MR**0095369 (20:1872)****[2]**D. BRINK,*Tchebycheff Approximation by Reciprocals of Polynomials on*, Thesis, Michigan State University, East Lansing, Mich., 1972.**[3]**C. GILORMINI, "Approximation rationelle avec des noeuds,"*C. R. Acad. Sci. Paris Sér.**A--B*, v. 263, 1966, pp. A286-A287. MR**34**#4768. MR**0204933 (34:4768)****[4]**D. C. HANDSCOMB,*Methods of Numerical Approximation*, Pergamon Press, London, 1966. MR**0455292 (56:13531)****[5]**H. L. LOEB, "Un contre-exemple à un résultat de M. Claude Gilormini,"*C. R. Acad. Sci. Paris Sér.**A--B*, v. 266, 1968, pp. A237-A238. MR**37**#5578. MR**0230012 (37:5578)****[6]**G. MEINARDUS,*Approximation of Functions*:*Theory and Numerical Methods*, Springer Tracts in Natural Philosophy, vol. 13, Springer-Verlag, New York, 1967. MR**36**#571. MR**0217482 (36:571)****[7]**A. L. PERRIE, "Uniform rational approximation with osculatory interpolation,"*J. Comput. System Sci.*, v. 4, 1970, pp. 509-522. MR**43**#776. MR**0275018 (43:776)****[8]**J. L. WALSH, "The existence of rational functions of best approximation,"*Trans. Amer. Math. Soc.*, v. 33, 1931, pp. 668-689. MR**1501609****[9]**J. WILLIAMS, "Numerical Chebyshev approximation by interpolating rationals,"*Math. Comp.*, v. 26, 1972, pp. 199-206. MR**0373230 (51:9431)**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A50

Retrieve articles in all journals with MSC: 41A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0355435-5

Keywords:
Existence of best rational interpolants,
Chebyshev approximation,
uniform rational approximation with interpolatory constraints

Article copyright:
© Copyright 1974
American Mathematical Society