A variable order finite difference method for nonlinear multipoint boundary value problems

Authors:
M. Lentini and V. Pereyra

Journal:
Math. Comp. **28** (1974), 981-1003

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1974-0386281-4

MathSciNet review:
0386281

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An adaptive finite difference method for first order nonlinear systems of ordinary differential equations subject to multipoint nonlinear boundary conditions is presented. The method is based on a discretization studied earlier by H. B. Keller. Variable order is provided through deferred corrections, while a built-in natural asymptotic estimator is used to automatically refine the mesh in order to achieve a required tolerance. Extensive numerical experimentation and a FORTRAN program are included.

**[1]**A. C. ALLISON, "The numerical solution of coupled differential equations arising from the Schrödinger equation,"*J. Computational Phys.*, v. 6, 1970, pp. 378-391. MR**43**#1438. MR**0275685 (43:1438)****[2]**P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem,"*Numer. Math.*, v. 9, 1967, pp. 394-430. MR**36**#4813. MR**0221761 (36:4813)****[3]**J. C. FALKENBERG, "A method for integration of unstable systems of ordinary differential equations subject to two-point boundary conditions,"*Nordisk Tidskr. Informations-behandling (BIT)*, v. 8, 1968, pp. 86-103. MR**39**#1123. MR**0239766 (39:1123)****[4]**P. HENRICI,*Discrete Variable Methods in Ordinary Differential Equations*, Wiley, New York, 1962. MR**24**#B1772. MR**0135729 (24:B1772)****[5]**R. J. HERBOLD, M. H. SCHULTZ & R. S. VARGA, "The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques,"*Aequationes Math.*, v. 3, 1969, pp. 247-270. MR**41**#6410. MR**0261798 (41:6410)****[6]**J. F. HOLT, "Numerical solution of nonlinear two-point boundary value problems by finite difference methods,"*Comm. ACM*, v. 7, 1964, pp. 366-373. MR**29**#5387. MR**0168123 (29:5387)****[7]**J. W. JEROME & R. S. VARGA, "Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems,"*Theory and Applications of Spline Functions*(edited by T. N. E. Greville), (Proc. Sem. Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, pp. 103-155. MR**39**#685, MR**0239328 (39:685)****[8]**H. B. KELLER,*Numerical Methods for Two-Point Boundary-Value Problems*, Blaisdell, Waltham, Mass., 1968. MR**37**#6038. MR**0230476 (37:6038)****[9]**H. B. KELLER, "Accurate difference methods for linear ordinary differential systems subject to linear constraints,"*SIAM J. Numer. Anal.*, v. 6, 1969, pp. 8-30. MR**40**#6776. MR**0253562 (40:6776)****[10]**H. B. KELLER, "A new difference scheme for parabolic problems,"*Numerical Solution of Partial Differential Equations*, II (edited by B. Hubbard) (SYNSPADE, 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 327-350. MR**43**#2866. MR**0277129 (43:2866)****[11]**H. B. KELLER, "Accurate difference methods for nonlinear two-point boundary value problems," (manuscript, 1972). MR**0351098 (50:3589)****[12]**M. LEES, "Discrete methods for nonlinear two-point boundary value problems,"*Numerical Solution of Partial Differential Equations*(edited by J. H. Bramble) (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 59-72. MR**34**#2196. MR**0202323 (34:2196)****[13]**M. LENTINI,*Correcciones diferidas para problemas de contorno en sistemas de ecuaciones diferenciales ordinarias de primer orden*, Pub. 73-04, Depto. de Comp., Fac. Ciencias, Univ. Central de Venezuela, Caracas, 1973.**[14]**J. M. ORTEGA & W. C. RHEINBOLDT,*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970. MR**42**#8686. MR**0273810 (42:8686)****[15]**M. R. OSBORNE, "On shooting methods for boundary value problems,"*J. Math. Anal. Appl.*, v. 27, 1969, pp. 417-433. MR**39**#6521. MR**0245209 (39:6521)****[16]**V. PEREYRA, "Iterated deferred corrections for nonlinear operator equations,"*Numer. Math.*, v. 10, 1967, pp. 316-323. MR**36**#4812. MR**0221760 (36:4812)****[17]**V. PEREYRA, "Iterated deferred corrections for nonlinear boundary value problems,"*Numer. Math.*, v. 11, 1968, pp. 111-125. MR**37**#1091. MR**0225498 (37:1091)****[18]**V. PEREYRA, "Highly accurate numerical solution of casilinear elliptic boundary value problems in*n*dimensions,"*Math. Comp.*, v. 24, 1970, pp. 771-783. MR**44**#6165. MR**0288970 (44:6165)****[19]**V. PEREYRA,*High Order Finite Difference Solution of Differential Equations*, Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973.**[20]**V. PEREYRA, "Variable order variable step finite difference methods for nonlinear boundary value problems,"*Proceedings Conference on the Numerical Solution of Differential Equations*, Dundee, Scotland, Springer-Verlag, Berlin, 1973. MR**0458918 (56:17117)****[21]**F. M. PERRIN, H. S. PRICE & R. S. VARGA, "On higher-order numerical methods for nonlinear two-point boundary value problems,"*Numer. Math.*, v. 13, 1969, pp. 180-198. MR**40**#8276. MR**0255069 (40:8276)****[22]**S. M. ROBERTS & J. S. SHIPMAN, "The Kantorovich theorem and two-point boundary value problems,"*IBM J. Res. Develop.*, v. 10, 1966, pp. 402-406. MR**34**#2198. MR**0202325 (34:2198)****[23]**S. M. ROBERTS, J. S. SHIPMAN & W. J. ELLIS, "A perturbation technique for nonlinear two-point boundary value problems,"*SIAM J. Numer. Anal.*, v. 6, 1969, pp. 347-358. MR**40**#8277. MR**0255070 (40:8277)****[24]**J. STOER & R. BULIRSCH,*Einführung in die Numerische Mathematik*II, Springer-Verlag, Berlin, 1973. MR**0400617 (53:4448)****[25]**J. VARAH,*On the Solution of Block Tridiagonal Systems Arising from Certain Finite-Difference Equations*, Univ. British Columbia, Dept. Comp. Sci. Technical Report 72-02, 1972. MR**0323087 (48:1445)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1974-0386281-4

Keywords:
Adaptive finite difference method,
variable order method,
nonlinear multipoint boundary value problem,
first order systems boundary problem

Article copyright:
© Copyright 1974
American Mathematical Society