Error estimates for the approximation of a class of variational inequalities
Author:
Richard S. Falk
Journal:
Math. Comp. 28 (1974), 963971
MSC:
Primary 65K05; Secondary 35J30
MathSciNet review:
0391502
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we prove a general approximation theorem useful in obtaining order of convergence estimates for the approximation of the solutions of a class of variational inequalities. The theorem is then applied to obtain an "optimal" rate of convergence for the approximation of a secondorder elliptic problem with convex set a.e. in }.
 [1]
Jean
Pierre Aubin, Approximation of variational inequations,
Functional Analysis and Optimization, Academic Press, New York, 1966,
pp. 7–14. MR 0213889
(35 #4743)
 [2]
H.
Brézis and M.
Sibony, Équivalence de deux inéquations
variationnelles et applications, Arch. Rational Mech. Anal.
41 (1971), 254–265 (French). MR 0346345
(49 #11070)
 [3]
Haïm
R. Brezis and Guido
Stampacchia, Sur la régularité de la solution
d’inéquations elliptiques, Bull. Soc. Math. France
96 (1968), 153–180 (French). MR 0239302
(39 #659)
 [4]
R. S. FALK, Approximate Solutions of Some Variational Inequalities with Order of Convergence Estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
 [5]
Hans
Lewy and Guido
Stampacchia, On the regularity of the solution of a variational
inequality, Comm. Pure Appl. Math. 22 (1969),
153–188. MR 0247551
(40 #816)
 [6]
J.L.
Lions and G.
Stampacchia, Variational inequalities, Comm. Pure Appl. Math.
20 (1967), 493–519. MR 0216344
(35 #7178)
 [7]
Umberto
Mosco, Approximation of the solutions of some variational
inequalities, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967),
373–394; erratum, ibid. (3) 21 (1967), 765. MR 0226376
(37 #1966)
 [8]
Umberto
Mosco, Convergence of convex sets and of solutions of variational
inequalities, Advances in Math. 3 (1969),
510–585. MR 0298508
(45 #7560)
 [9]
J.
Nitsche, Lineare SplineFunktionen und die Methoden von Ritz
für elliptische Randwertprobleme, Arch. Rational Mech. Anal.
36 (1970), 348–355 (German). MR 0255043
(40 #8250)
 [1]
 J. P. AUBIN, "Approximation of variational inequalities," Functional Analysis and Optimization (edited by E. R. Caianiello), Academic Press, New York, 1966, pp. 714. MR 35 #4743. MR 0213889 (35:4743)
 [2]
 H. BREZIS & M. SIBONY, "Equivalence de deux inéquations variationnelles et applications," Arch. Rational Mech. Anal., v. 41, 1971, pp. 254265. MR 0346345 (49:11070)
 [3]
 H. BRÉZIS & G. STAMPACCHIA, "Sur la regularité de la solution d'inéquations elliptiques," Bull. Soc. Math. France, v. 96, 1968, pp. 153180. MR 39 #659. MR 0239302 (39:659)
 [4]
 R. S. FALK, Approximate Solutions of Some Variational Inequalities with Order of Convergence Estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
 [5]
 H. LEWY & G. STAMPACCHIA, "On the regularity of the solution of a variational inequality," Comm. Pure Appl. Math., v. 22, 1969, pp. 153188. MR 40 #816. MR 0247551 (40:816)
 [6]
 J. L. LIONS & G. STAMPACCHIA, "Variational inequalities," Comm. Pure Appl. Math., v. 20, 1967, pp. 493519. MR 35 #7178. MR 0216344 (35:7178)
 [7]
 U. MOSCO, "Approximation of the solutions of some variational inequalities," Ann. Scuola Norm. Sup. Pisa, (3) v. 21, 1967, pp. 373394; erratum, ibid. (3) v. 21, 1967, p. 765. MR 37 #1966. MR 0226376 (37:1966)
 [8]
 U. MOSCO, "Convergence of convex sets and of solutions of variational inequalities," Advances in Math., v. 3, 1969, pp. 510585. MR 45 #7560. MR 0298508 (45:7560)
 [9]
 J. NITSCHE, "Lineare SplineFunktionen und die Methoden von Ritz für elliptische Randwertprobleme," Arch. Rational Mech. Anal., v. 36, 1970, 348355. MR 40 #8250. MR 0255043 (40:8250)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65K05,
35J30
Retrieve articles in all journals
with MSC:
65K05,
35J30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197403915028
PII:
S 00255718(1974)03915028
Article copyright:
© Copyright 1974
American Mathematical Society
