Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Error estimates for the approximation of a class of variational inequalities


Author: Richard S. Falk
Journal: Math. Comp. 28 (1974), 963-971
MSC: Primary 65K05; Secondary 35J30
MathSciNet review: 0391502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove a general approximation theorem useful in obtaining order of convergence estimates for the approximation of the solutions of a class of variational inequalities. The theorem is then applied to obtain an "optimal" rate of convergence for the approximation of a second-order elliptic problem with convex set $ K = \{ \upsilon \in H_0^1(\Omega ):\upsilon \geqslant \chi $ a.e. in $ \Omega $}.


References [Enhancements On Off] (What's this?)

  • [1] Jean Pierre Aubin, Approximation of variational inequations, Functional Analysis and Optimization, Academic Press, New York, 1966, pp. 7–14. MR 0213889
  • [2] H. Brézis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal. 41 (1971), 254–265 (French). MR 0346345
  • [3] Haïm R. Brezis and Guido Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153–180 (French). MR 0239302
  • [4] R. S. FALK, Approximate Solutions of Some Variational Inequalities with Order of Convergence Estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
  • [5] Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153–188. MR 0247551
  • [6] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. MR 0216344
  • [7] Umberto Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 373–394; erratum, ibid. (3) 21 (1967), 765. MR 0226376
  • [8] Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 0298508
  • [9] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348–355 (German). MR 0255043

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65K05, 35J30

Retrieve articles in all journals with MSC: 65K05, 35J30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1974-0391502-8
Article copyright: © Copyright 1974 American Mathematical Society