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The Distribution of Crossings

of Chords Joining Pairs of 2n Points on a Circle

By John Riordan

Abstract.   This paper, in the first place, calls attention to an extraordinarily compact

solution of the problem in the title, given (a trifle hidden) in the work of the late

Jacques Touchard.   Its main weight, however, is on properties of the several kinds of

number sequences appearing.

1.  Introduction.   Alfred Errera [1] apparently was the first to pose and solve

the problem: in how many ways may  2«   points on a circle be joined in pairs so that

the corresponding chords do not intersect within the circle.  The answer is what I am

accustomed to call the Catalan number,  cn = (2«)!/«!(« + 1)!,  which is also associat-

ed with ballots and parenthesizations. More recently the brothers Yaglom [9, Problem

54] have re-examined the problem and supplied a mapping onto ballots.  The problem

has the natural extension to the enumeration of all possible   (1 • 3 ■ • • (2« - 1))

pairings of 2«   points on a circle by number of crossings of the chords.

This extension was put to me by a friend, G. W. Ford, because of its interest

(actually only tangential) in the combinatorial approach to the Ising model initiated by

M. Kac and J. C. Ward [2].  Sometime much later, I found that an extraordinary com-

pact solution had been given by the late Jacques Touchard [6], [7], [8].

This is as follows.  With   Tn{x)  the enumerating generating function by number

of crossings, then

(1)

with

tn{x) = (i - x)nT„{x) = z {- dv,   j = r 2 )-

= Í2n\_(     2«    \
tnj       an + j,n-j       \n ~ j)      \n - j ~ l)

2/ +1   / 2« \      2/ + 1  A« + A
j + « + 11« - / )     2n + l\n-j J

The number anm   is the number of weak-lead election returns with final vote  («, m)

and  n>m,  that is, the number of lattice paths from (0, 0)  to  («, m)  without
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crossings of diagonal points (k, k);an0 = 1, anm = anm_l +an_lm,  m =

1(1)« - 1 and antJ = an      t = cn,  the Catalan number.  Touchard calls them num-

bers of Delannoy, with a reference to [1].   It may be noted at once that their recurrence

implies (cf. [4, p. 661 )

Xn ,0  = fn - 1 ,0 + rn- 1,1   = Cn >

'»,/ = fn- X j- l+2tn_u¡ + tn_. >/+ j,        / =  l(l)n>

and also  (6nm   is the Kronecker delta here and later)

'n,0  + '«1   +■■■ +t
JA

nn        ynJ>

Í„0) = ín0-'B1   +•••+(- !)"'„„ = «„O-

The table for  in/-  starts as follows:

//«     0     1     2

0 1      1     2     5 14 42
1 1     3     9 28 90
2 1      5 20 75
3 1 7 35
4 1 9
5 1

Because Eq. (1), b,y a strange oversight, does not appear explicitly in any of the

Touchard references cited, I give a short derivation in the next section, using results in

[8].  This is followed by an examination of the immediate implications of (1) on the

coefficients  Tnk  of Tn{x),  and by a similar study of other Touchard identities.

I do not take space to prove the following results on the probability distribution

Tn{x)ITn{l):  the mean is «(« - l)/6  and the variance is  (« + 3)«(« - l)/45.

2.   The Touchard Formula for   Tn{x).  In [6], Touchard arrived at the present

problem in an effort to get more light on the frustrating enumeration of foldings of

strips of postage stamps.  The form it took is different from, but equivalent to, that

described above and may be stated as follows.  The  2«  points are uniformly distri-

buted on a line, and are connected in pairs by  «   convey arcs, all above the line; the

double points on these arcs correspond to the crossings of chords on the circle.   For

illustration, for  « = 2,  the diagrams for the three pairings: (12)(34), (13)(24) and

(14)(23) are

It is clear that the first of these falls into two parts, each the single arc for  « = 1   and

may be indicated by  (l2);  the other two do not and are indicated (together) by (2).
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If S.{x), S2{x)  axe the enumerators of these pairing classes by number of double

points, then

T2ix) = [S,{x)]2 + S2{x) = 1 + (1 + x) = 2 + x.

Similarly

T3{x) = [S,{x)]3 + 2S2{x)S,{x) + S3{x).

Thus, for general «, the terms appearing correspond to partitions of «, with numer-

ical coefficients given by permutations of elements of character specified by the corre-

sponding partition, and, abbreviating S¡{x)  to  S¡,

(2) Tn{x)=Z[k;k1,--,kn]Sli---Sk„"

with « = k. + 2k2 + ■ ■ ■ + nkn,  k = k, + k2 + • • • + kn,   [k; fcj, ■ ■ • , kn]   a

multinomial coefficient and summation over all partitions of «.   Equation (2) recalls

the relations of elementary symmetric functions an   and homogeneous product sums

hn  (cf., e.g., [4, p. 188]) which follow from

1 = (1 - a.y + a2y2 - ay3 + ■ ■ ■ )(1 + h.y + h2y2 +■■■),

and indeed (2) follows from

(3) 1 = (1 -S.y -S2y2 -Sy3-)(1 + T.y + T2y2 + ■ ■ • )

where as above  S{  is short for S¡{x),  T¡  for  T¡{x).

In terms of the generating functions

S{x, y)= Z Sn{x)y",      T{x, y)=Z Tn{x)yn,      S0{x) = T0(x) = 1,
n = 0 0

Eq. (3) has the form:

(3a) 1 = (2 - S{x, y))T{x, y).

Now notice that Eq. (32) of [8], namely

1 - (1 - x)zFix, (1 - x)z) = (1 - Zsp{z))lA(x, 1 - 0(z))

with A{x, y) = 1 + xy + x3y2 + ■ ■ ■ + xNy" + ■ ■ ■ ,  N = ("+ ' ),  and (unnumber-

ed equation following (20) of [8]), F{x, z) = S,{x) + S2{x)z + • • ■ + Sn{x)zn~l +

• • ■ , while  0(z) = c{z),  the generating function for Catalan numbers, cn,  may be

rewritten

(4) 2 - S{x, (1 - x)z) = (1 - zc{z))¡Aix, 1 - c{z)).

Hence, by (3a)

(5) T{x, (1 - x)y) = A{x, 1 - c(y))/(l - yciy)) = ciy)A{x, 1 - d»),

since   1 = c(y)(l -yciy)).  Then, since   1 - c{y) - ~yc2(y), Eq. (5) is the same as
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T\x, (1 - x)y) =   Z tn{x)y" = ciy)A{x, -yc2(y))
(6) o

= E(-i)Wc2/+1r>),    / = (/21)

But  cp+1(y) = 20ap + nnyn   (cf. [8,Eq. (6)], or [4, p. 153]); hence (1) follows by

equating coefficients of y"   in (6).

The equation  tn{x) = (1 - x)"Tn{x)  and its inverse   Tn{x) = (1 - x)~ntn{x)

of course imply identities in the coefficients  t ■  and   Tnk  (the coefficient of xk  in

r„(x)),  namely

o-zc-iy^y».«-*. "•*/./= 'OK

From these, some of the  Tnfc  may be found explicitly.  Thus  TnQ = tn0 = cn, in

agreement with [1],

Tnl="Tn0-tnl =

T„2=nTn.

ZZ

These results and the further expressions for  k = 3(1)6  appear in [6, pp. 395 and

396] with the notation   U2nik)  for  Tnk.

The polynomial   Tn{x) is of degree  N = ("),   and it is interesting to note that

the relations above imply

^-(■T) / = 0(1)« - 1,

because this result holds also for the corresponding coefficient of Jn+l{x),  the enum-

erator for labelled trees by number of inversions [3].  For concreteness, I repeat the

table in [6], for   Tnk,  n = 1(1)5,  k = l(l)rV,  N = Q

n/k      0   1   2   3   4   5   6   7   8  9  10

1 1
2 2   1
3 5   6   3   1
4 14   28   28  20   10   4   1
5 42  120  180  195  165  117  70  35  15  5  1
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It is worth noting (because of its interest in the Ising model) that  tn{- 1) =

'no + tHl - tn2 - rn3 + • • • + (- 1)W% + • • • + {l)ln/2]tnn.  Using the recur-

rences for   tn •  given earlier, this implies

tni- 1) = 2r„_1(- 1) = 2",     T„{- 1) = 2-"t„{- 1) = 1.

3.  Imaginary Arguments.   In [8, p. 10] Touchard exhibits the remarkable form-

ula

S„(f) = (1 + 0(1 + 2i)"-2,      n = 2, 3, ■ • • ; i2 = -1.

Setting Sn+2{i) = an + ibn, it follows at once that

an+X ~an =~2bn> bn+l~bn = 2an>

and hence

(8) an + 2-2an+l+5an=0,      bn + 2 - 2bn+ . + Sbn = 0.

With a{x), b{x)  the ordinary generating functions for an, bn,  these recurrences and

the boundary conditions aQ= b0 = 1, a, = -1,  b, = 3   imply

(9) (1 - 2x + 5x2)a{x) =1-3*,      (1 - 2x + 5x2)b{x) = 1 + x.

The first few values of the numbers an, bn   ate

«0123 456 7 8

«„      1-1-7-9 17     79   ~73     =249     :I863

¿»„13        1     -13     -31        3     161       307     -191

Further, since  S0{x) = S^x) = 1,  Touchard's relation entails

2 - S(i, y) = 1 -y - (1 + z>2(l - (1 + 2i»- '

(10)

= (1 - (2 + 2i)y + iy2Xl ~ (1 + 2i»" '.

Then by (3a)

(11) T{i, y) = (1 - (1 + 2i»(l - (2 + 2i> + i>2)- «.

Noting that   1 - 2(1 + i)y + iy2 = (1 - (1 + i)y)2 - iy2,  (11) may be expanded as

follows

T{i, y) = [1 - (1 + 2i)y] Z WK* ~ 0 + i»"27'-2
7=0

[i-(i + 2l>H z(2i + kk + l\'{i+i)ky2i+k

/=0 fc = 0\ /

h = 0
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with fn = 20(2"/+1,)2-/.  Thus

(12) Tn(i) = m+if{2fn-0 + iYn-il      » = 0, 1,2,-••.

The recurrence for fn,  following from that for binomial coefficients, is /„ - 2fn _ l +

xhfn_2 = 6„0.  Hence its generating function is fix) = (1 - 2x + x2l2)~l   and the

partial fraction expansion of the latter shows that

fn=a[(l + a)"+1 -{l-a)n+l],      0—2"1/2.

Use of the recurrence in (12) provides the alternate form

(12a) rB(i) = a(l +0"[(l-0/„-, -/„-2J>   n=l,2,---,

and hence

tn{i) = 0 -i)"Tn{i) = 2"'l{2fn - (3 + 0r„_i)

= 2"-1[(l-0/„-,-/„-2]>      n = l,2,---.

Values of 2n~lfn = gn   and the real and imaginary parts of i„(z),  designated i?r„(/)

and Itn{i) follow

« 0        1       2 3 4 5            6_7_8^_9_

gn 1       2       7 24 82 280       956       3264       11144       38048

Rtnif) 112 6 20 68       232         792         2704         9232

Itnii) 0     -1     -4 -14 -48 -164 -580     -1912       -6528    -22288

For verification of the table, it may be noted that

(14) t{i, y) = T{i, (1 - i)y) = [1 - (3 + i)y] [1 - Ay + 2y2] "l.

Hence

(15) tnii) - Atn_.{t) + 2r„_2(0 = ô„0 - (3 + i)8n.

or

(15a) ^ = 4tn- i(0 - 2r„_2(0,      « = 2, 3, • • • .

For a similar study of the real and imaginary parts of Tn{i)  it is convenient to

ignore the initial values  ^(O = T^i) = 1   and define

(16) Tn+2(i) = A„+iBn,      n = 0,l,---;i2=-l.

Then with A{y), B{y)  the generating functions of An, Bn,

y-2[T{i,y)-l-y)=Aiy) + iBiyY

using Eq. (11), it is found that

(17) [2 + i(l - y)] [1 - 2yi{2y - y2)] 'l = A(y) + iBiy).
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With Diy) = 1 - Ay + 8y2 - Ay3 + y4, it turns out that

(18) Diy)Aiy) = 2 - 6y + 3y2 - y3,      Diy)B(y) = I + y.

The corresponding recurrences are

An-AAn_, + SAn_2 - AAn_3 + An_4 = 2ôn0 - 68nl + 36„2 - 6n3,
(19)

B„ -ABn^, + 8Bn_2-ABn_3+Bn_4=8n0 + 6nl.

Notice that the right-hand side is zero for  « > 3  in the first, « > 1   in the second.

An immediate consequence of (11) is the recurrence

(20) Tn{i) - (2 + 2i)Tn_,{i) + iTn_2{I) = 6„0 - (1 + 20SBl.

Using (16) in this equation (with  «   replaced by  « + 2)  and separating real and

imaginary parts, it follows that

(2D       An + 2-2An+l=-2Bn+1 +Bn,      Bn + 2 - 2Bn+ . = 2An+ . - An.

Hence

An+2-An=Bn+2-4Bn+. +Bn,
(22)

An + ,-An=Bn + 4-ABn+3+2Bn + 2-ABn+l+Bn=~6Bn + 2,

the last step by the second recurrence in (19).   Similarly, it is found that

(23) Bn + 4-Bn=-iAn + 4-AAn+3+2An + 2-AAn+] +An) = 6An+2.

Combination of (22) and (23) produces

(24) An+S + 3AAn+4 +An=0,      Bn + & + 3ABn + 4 + Bn = 0.

Illustrative numerical results are in the following table

«01234 5 6 78 9 10 11

A„    2 2 -5 -29 -70  -70  169  985 2378 2378 -5741 -33461

Bn    1 5 12  12 -29 -169 -408 -408  985 5741  13860  13860

I do not take space to prove the identities apparent in the table, namely:  A4n =

^4n + l-    ß4n + 2  = ß4n + 3'   ^4n + 2  = ~^4n+ 1'    ^4n+ 3 = -°4n + 4-
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