Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The number of distinct subsums of $\sum _{1}^{N} 1/i$
HTML articles powered by AMS MathViewer

by M. N. Bleicher and P. Erdős PDF
Math. Comp. 29 (1975), 29-42 Request permission

Abstract:

In this paper we improve the lower bounds for the number, $S(N)$, of distinct values obtained as subsums of the first N terms of the harmonic series. We obtain a bound of the form \[ S(N) \geqslant e\left ( {\frac {{N\log 2}}{{\log N}}\prod \limits _3^{k + 1} {{{\log }_j}N} } \right )\] whenever ${\log _{k + 1}}N \geqslant k + 1$, for $k \geqslant 3$. Slight modifications are needed for $k = 1,2$. We begin by discussing the number ${Q_k}(N)$ of integers $n \leqslant N,n = {p_1}{p_2} \cdots {p_k}$, where ${p_i} > {e^{\alpha {p_{i - 1}}}},i = 2, \cdots ,k$. We prove that \[ \frac {N}{{\log N}}\prod \limits _{i = 1}^{k + 1} {{{\log }_i}N \leqslant {Q_k}(N) \leqslant \left ( {1 + \frac {k}{{{{\log }_{k + 1}}N}}} \right )} \frac {N}{{\log N}}\prod \limits _{i = 3}^{k + 1} {{{\log }_i}N} .\] This bound is valid for ${\log _{k + 1}}N \geqslant k + 1$ and for $1 \leqslant \alpha \leqslant 2(1 - {e_2}(4)/{e_3}(4))$. The symbols ${\log _i}x$ and ${e_i}(x)$ are defined by \[ \begin {array}{*{20}{c}} {{e_0}(x) = x,} \hfill & {{e_{i + 1}}(x) = {e^{{e_i}(x)}},} \hfill \\ {{{\log }_0}x = x,} \hfill & {{{\log }_{i + 1}}x = \log ({{\log }_i}x),} \hfill \\ \end {array} \] where $\log x$ denotes the logarithm to the base e.
References
  • M. N. Bleicher, A new algorithm for the expansion of Egyptian fractions, J. Number Theory 4 (1972), 342–382. MR 323696, DOI 10.1016/0022-314X(72)90069-8
  • M. N. BLEICHER & P. ERDÖS, "Denominators of Egyptian fractions. II" (To appear.) M. N. BLEICHER & P. ERDÖS, "The number of distinct subsums of $1 + 1/2 + 1/3 + 1/4 + \cdots + 1/N$ Notices Amer. Math. Soc., v. 20, 1973. Abstract #706-10-3.
  • J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 10A25
  • Retrieve articles in all journals with MSC: 10A25
Additional Information
  • © Copyright 1975 American Mathematical Society
  • Journal: Math. Comp. 29 (1975), 29-42
  • MSC: Primary 10A25
  • DOI: https://doi.org/10.1090/S0025-5718-1975-0366795-4
  • MathSciNet review: 0366795