Continued Fractions and Linear Recurrences

By W. H. Mills

Abstract. Let \(t_0, t_1, t_2, \ldots \) be a sequence of elements of a field \(F \). We give a continued fraction algorithm for \(t_0 + t_1 x + t_2 x^2 + \cdots \). If our sequence satisfies a linear recurrence, then the continued fraction algorithm is finite and produces this recurrence.

More generally the algorithm produces a nontrivial solution of the system

\[
\sum_{j=0}^{s} t_{i+j} x^j \quad 0 \leq i \leq s - 1,
\]

for every positive integer \(s \).

1. Let \(t_0, t_1, t_2, \ldots \) be a sequence of elements of a field \(F \). Set

\[
T = \sum_{j=0}^{\infty} t_j x^j.
\]

Let \(d \) be a nonnegative integer. We say that \(T^* \) is an approximation of \(T \) of degree \(d \) if there exist polynomials \(V \) and \(W \) such that \(T^* = V/W \), \(\deg V < d \), \(\deg W < d \), \(x \not| W \), and \(x^{2d} | WT - V \).

We shall give a continued fraction expansion for \(xT \). This yields polynomials \(V_i/W_i \), and integers \(d_i \), \(0 = d_1 < d_2 < d_3 < \cdots \), such that \((V_i/W_i) = 1 \) and \(V_i/W_i \) is an approximation of \(T \) of degree \(d_i \). Suppose \(T^* \) is any approximation of \(T \) of some degree \(d \). Then \(T^* = V_i/W_i \) for that value of \(i \) such that \(d_i \leq d < d_{i+1} \).

If the sequence of the \(t_j \) satisfies a linear recurrence of degree \(d \), but not one of smaller degree, then there is an \(m \) such that \(d_m = d \) and the linear recurrence is given by the polynomial \(W_m \). In this case, \(W_m T = V_m \), the continued fraction expansion terminates at \(i = m \), and we can determine \(W_m \) from the first \(2d \) of the \(t_j \), i.e., from those \(t_j \) such that \(0 \leq j < 2d \).

Our algorithm is closely related to Zierler's version of Berlekamp's algorithm [1].

2. We consider continued fraction expansions of the form

\[
\alpha = N_1 + \frac{1}{N_2 + \frac{1}{N_3 + \cdots}}
\]

where \(N_1, N_2, N_3, \ldots \) are elements from some field \(E \). We can write

Received January 28, 1974.

Copyright © 1975. American Mathematical Society

173
\(\alpha = N_1 + R_1, \quad 1/R_1 = N_2 + R_2, \quad 1/R_2 = N_3 + R_3, \cdots. \)

If \(R_m = 0 \) for some \(m \), then the continued fraction terminates with \(N_m \). Otherwise it is an infinite continued fraction.

In the classical case, \(\alpha \) is a real number, the \(N_i \) are integers, and \(0 < R_i < 1 \) for all \(i \). We are interested in a different case.

We set

1. \(P_0 = 1, \quad Q_0 = 0; \quad P_1 = N_1, \quad Q_1 = 1, \)

2. \(P_i = N_i P_{i-1} + P_{i-2}, \quad i \geq 2, \)

and

3. \(Q_i = N_i Q_{i-1} + Q_{i-2}, \quad i \geq 2. \)

It is well known, and easy to show, that

\begin{align*}
\frac{P_1}{Q_1} &= N_1, \\
\frac{P_2}{Q_2} &= N_1 + 1/N_2, \\
\frac{P_3}{Q_3} &= N_1 + 1/(N_2 + 1/N_3), \\
& \quad \cdots.
\end{align*}

The sequence \(P_1/Q_1, P_2/Q_2, P_3/Q_3, \cdots \) converges to \(\alpha \) in many cases, including the classical case.

We put

\(A_i = a Q_i - P_i, \quad i \geq 0. \)

Then we have

4. \(\Delta_0 = -1, \quad \Delta_1 = \alpha - N_1 \)

and

5. \(\Delta_i = N_i \Delta_{i-1} + \Delta_{i-2}, \quad i \geq 2. \)

Clearly \(R_1 = \alpha - N_1 = -\Delta_1/\Delta_0. \) Since \(R_{i+1} = -N_{i+1} + 1/R_i \) it follows from (5), by induction on \(i \), that

6. \(R_i = -\Delta_i/\Delta_{i-1}, \quad i \geq 1. \)

3. We now take \(E \) to be the field of all series of the form \(\Sigma_{j=k}^{\infty} a_j x^j \), where the \(a_j \) are elements of the field \(F \) and \(k \) is a rational integer which may be negative. For convenience let \(y = 1/x. \) We set \(\alpha = xT \) and \(N_1 = 0. \) Then \(R_1 = \alpha = xT. \) We now define the \(N_i \) and \(R_i \) inductively using

7. \(1/R_{i-1} = N_i + R_i, \quad i \geq 2, \)

where we take \(N_i \) to be a polynomial in \(y \) and \(x|R_i. \) Thus if

\(1/R_{i-1} = \sum_{j=k}^{\infty} a_j x^j, \quad a_k \neq 0, \)
it turns out that \(k < 0 \) and we have

\[
N_i = \sum_{j=k}^{0} a_j x^j = \sum_{u=0}^{-k} a_u x^u \quad \text{and} \quad R_i = \sum_{j=1}^{\infty} a_j x^j.
\]

This determines the \(N_i \) and \(R_i \) uniquely. If \(R_m = 0 \) for some \(m \), then the process terminates at this point. The \(P_i, Q_i, \) and \(\Delta_i \) are now determined by (1), (2), (3), (4), and (5).

We shall write \(x^r \mid A \) if \(x^r \) divides \(A \), but \(x^{r+1} \) does not divide \(A \). This means that \(A \) is of the form \(A = \sum_{j=r}^{\infty} a_j x^j \) with \(a_r \neq 0 \). Let \(x^r \mid R_i, \quad i \geq 1 \). If \(R_m = 0 \), we set \(r_m = \infty \). Then \(r_i \geq 1 \) for \(i \geq 1 \). For \(i \geq 2, N_i \) is a polynomial in \(y \) of degree \(r_i-1 \). Set

\[
d_i = \sum_{j=1}^{i-1} r_j.
\]

Then we have \(0 = d_1 < d_2 < d_3 < \cdots \). It follows from (1) and (3), by induction on \(i \), that \(Q_i \) is a polynomial in \(y \) of degree \(d_i \). Similarly, for \(i \geq 2, P_i \) is a polynomial in \(y \) of degree \(d_i - r_1 \). Set

\[
V_i = x^{d_i-1} P_i, \quad W_i = x^{d_i} Q_i.
\]

Then \(V_i \) and \(W_i \) are polynomials in \(x \), \(\deg V_i < d_i \), and \(\deg W_i \leq d_i \). Moreover, \(W_i \) has a nonzero constant term so that \(x \mid W_i \). Now

\[
T W_i - V_i = x^{d_i-1} (a Q_i - P_i) = x^{d_i-1} \Delta_i.
\]

Since \(\Delta_0 = -1 \), (6) gives us

\[
\Delta_i = (-1)^{i+1} \prod_{j=1}^{i} R_j.
\]

Since \(x^r \mid R_j \), we have

\[
x^{d_i+1} \mid \Delta_i
\]

by (8). Hence

\[
x^{d_i+1} \mid \Delta_i
\]

by (8). Hence

\[
x^{d_i+1} \mid \Delta_i
\]

Therefore, \(x^{2d_i} | T W_i - V_i \) so that \(V_i / W_i \) is an approximation of \(T \) of degree \(d_i \).

Lemma 1. Let \(T^* \) be an approximation of \(T \) of degree \(d \). Let \(i \) be the integer such that \(d_i \leq d < d_{i+1} \). Then \(T^* = V_i / W_i \).

Proof. We have \(T^* = V_i / W_i \) where \(\deg W \leq d \), \(\deg V < d \), and \(x^{2d} | T W - V \).

Now \(d + d_i \leq 2d \) so that \(x^{d+d_i} | T W - V \). Moreover, \(i + d_i \leq d_i + d_{i+1} - 1 \) so that \(x^{d+d_i} | W_i T - V_i \) by (10). Since

\[
V_i W - \overline{T W_i} = W_i (T W - V) - W_i (W_i T - V_i),
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
we have

\[x^{d + d_i} V_i W - V W_i. \]

Now the degree of \(V_i W - V W_i \) is less than \(d + d_i \). Therefore \(V_i W - V W_i = 0 \), so that

\[T^* = V/W = V_j/W_j. \]

Lemma 2. If \(V_i/W_i = V_j/W_j \), then \(i = j \).

Proof. Suppose \(V_i/W_i = V_j/W_j \). Then we have \(V_i = VD, W_i = WD, V_j = VE, W_j = WE \) for suitable polynomials \(V, W, D, E \) with \((V, W) = 1 \). Since \(x^d W \), we have \(x^d D \) so that (10) yields

\[x^{d_i + d_i+1} T W - V. \]

Similarly

\[x^{d_j + d_j+1} T W - V. \]

Hence

\[d_i + d_i+1 - 1 = d_j + d_j+1 - 1. \]

Therefore, \(i = j \).

Lemma 3. \((V, W) = 1 \).

Proof. Suppose \((V, W) = D \) where \(\deg D > 0 \). Then \(V_i = VD, W_i = WD \) for suitable polynomials \(V, W \) such that \(x^d W, \deg W < d_i \), and \(\deg V < d_i - 1 \). Moreover \(x^d W \) so that \(x^d W - V \). Hence \(V/W \) is an approximation of \(T \) of degree less than \(d_i \). By Lemma 1 we have \(V/W = V_j/W_j \) for some \(j < i \). This contradicts Lemma 2.

Lemma 4. For any particular value of \(i \) we have either \(\deg V_i = d_i - 1 \) or \(\deg W_i = d_i \).

Proof. Since \(\deg W_i = 0 = d_i \), we may suppose \(i > 1 \). If the result is false, then \(V_i/W_i \) is an approximation of \(T \) of degree less than \(d_i \). By Lemma 1 this implies that \(V_i/W_i = V_j/W_j \) for some \(j < i \), which contradicts Lemma 2.

4. Let \(\{t_j\} = \{t_0, t_1, \ldots, t_{n-1}\} \) be a finite sequence of elements of \(F \), and set

\[T = \sum_{j=0}^{n-1} t_j x^j. \]

Let \(W \) be a polynomial of degree \(s \) with a nonzero constant term. Thus \(W = \sum_{j=0}^{s} w_j x^j \), where the \(w_j \) are elements of \(F, w_0 \neq 0, w_s \neq 0 \). The linear recurrence given by \(W \) is

\[\sum_{j=0}^{s} w_j f_{k-j} = 0. \]

If (11) holds for a particular value \(k_0 \) of \(k \), we say that the linear recurrence \(W \) holds
for \(k_0 \). If (11) holds for all values of \(k \) for which the left side is defined, i.e., for \(s \leq k \leq n - 1 \), then we say that the sequence \(\{t_j\} \) satisfies the linear recurrence \(W \).

Whenever we speak of a linear recurrence \(W \) we shall mean a polynomial \(W \) with a nonzero constant term. The degree of the linear recurrence is defined to be the degree of this polynomial.

In order to determine \(W \), up to a multiplicative constant, we must have (11) satisfied by at least \(s \) values of \(k \). Hence we must have \(2s \leq n \). Our problem is to determine whether or not the sequence \(\{t_j\} \) satisfies a linear recurrence of degree \(\leq n/2 \), and if so to determine the linear recurrence of lowest degree that \(\{t_j\} \) satisfies.

Let \(h = \lfloor n/2 \rfloor \). Thus \(h \) is an integer and either \(n = 2h \) or \(n = 2h + 1 \). Let \(xT \) be expanded in a continued fraction as indicated in Section 2 and Section 3. This gives us polynomials \(V_j \) and \(W_j \) and integers \(d_j \). Let \(m \) be the integer such that \(d_m \leq h < d_{m+1} \). This is equivalent to

\[
2d_m \leq n < 2d_{m+1}.
\]

Now suppose that the sequence \(\{t_j\} \) satisfies a linear recurrence \(W \) of degree \(s \), where \(s \leq n/2 \). Thus \(s \leq h \). We suppose \(W \) chosen so that \(s \) is minimal. Set \(V = \sum_{i=0}^{j-1} v_j x_i \), where

\[
v_j = \sum_{i=0}^{j} w_j t_{j-i}.
\]

Then \(x^n | TW - V \) by (11) so that \(V/W \) is an approximation of \(T \) of degree \(h \). More precisely it is an approximation of \(T \) of degree \(d \) for any \(d \) such that \(s \leq d \leq h \). By Lemma 1 and the choice (12) of \(m \) we have \(V/W = V_m/W_m \). Since \(W \) is of minimal degree, we have \((V, W) = 1 \). Moreover \((V_m, W_m) = 1 \) by Lemma 3, so that \(W = \lambda W_m \) for some nonzero element \(\lambda \) of \(F \).

More generally, suppose only that the linear recurrence \(W \) holds for those \(k \) such that \(h \leq k \leq n - 1 \), that \(\deg W \leq h \), and that \(W \) is a linear recurrence of minimal degree with these properties. As above there is a polynomial \(V \) such that \(V/W \) is an approximation of \(T \) of degree \(h \), \((V, W) = 1 \), and \(W = \lambda W_m \) for some nonzero \(\lambda \) in \(F \).

It is easy to see that there need not be such a linear recurrence. For example, we may take \(\{t_j\} = \{0, 0, \ldots, 0, 1\} \). However, we have shown that if there is one, then it must be \(W_m \), up to a multiplicative constant.

Now

\[
x^{d_m + d_{m+1} - 1} | TW_m - V_m
\]

by (10). Hence if \(n \geq d_m + d_{m+1} \), then \(\{t_j\} \) does not satisfy the linear recurrence \(W_m \), in fact \(W_m \) fails to hold for \(d_m + d_{m+1} - 1 \). Thus we have the following result:

Theorem 1. If \(d_m + d_{m+1} \leq n < 2d_{m+1} \), then the sequence \(\{t_j\} \) does
not satisfy any linear recurrence of degree $\leq n/2$. In fact, there is no linear recurrence of degree $\leq n/2$ that holds for all k such that $h \leq k \leq n - 1$.

Now suppose that $n < d_m + d_{m+1}$. Then the linear recurrence W_m holds for all k in the range $d_m \leq k \leq n - 1$. We have $\deg W_m \leq d_m$. If $\deg W_m = d_m$, then $\{t_j\}$ satisfies the linear recurrence W_m. However, if $\deg W_m < d_m$, then $\deg V_m = d_m - 1$ by Lemma 4, and, therefore, the linear recurrence W_m fails to hold at $d_m - 1$. Thus we have the following result:

Theorem 2. Suppose $2d_m \leq n < d_m + d_{m+1}$. If $\deg W_m = d_m$, then W_m is a linear recurrence of minimal degree satisfied by $\{t_j\}$. If $\deg W_m < d_m$, then there is no linear recurrence of degree $\leq n/2$ which is satisfied by $\{t_j\}$. However, W_m is a linear recurrence of minimal degree that holds for all k such that $h \leq k \leq n - 1$. It holds for all k in the range $d_m \leq k \leq n - 1$, and fails to hold for $d_m - 1$.

5. In this section, we shall describe an efficient method of computing the polynomial W_m. As before, let $\{t_j\} = \{t_0, t_1, \cdots, t_{n-1}\}$ be the finite sequence we are interested in. We start with $N_1 = 0$, $A_0 = -1$, and $A_1 = x T_N l = \sum_{j=0}^{n-1} t_j x^{j-1}$.

For $i \geq 2$, (6) and (7) give us

$$N_i + R_i = 1/R_{i-1} = -\Delta_{i-2}/\Delta_{i-1},$$

where $x R_i$ and N_i is a polynomial in y, $y = 1/x$. Thus N_i can be obtained from Δ_{i-2} and Δ_{i-1} by an ordinary division process. Then Δ_i is given by (5):

$$\Delta_i = N_i \Delta_{i-1} + \Delta_{i-2}. $$

In this way, the N_i and the Δ_i can be successively obtained. We must continue this out to $i = m$ where $2d_m \leq n < 2d_{m+1}$. Since $x^{d_i} \| \Delta_{i-1}$ by (9), we know at once when we have reached $i = m$. If $d_m + d_{m+1} \leq n$, then there is no solution. If $d_m + d_{m+1} > n$, then we calculate Q_m from the N_i and the relations $Q_0 = 0$, $Q_1 = 1$, $Q_i = N_i Q_{i-1} + Q_{i-2}$.

If Q_m has a nonzero constant term, then $\deg W_m = d_m$ and $W_m = x^{d_m} Q_m$ is the required linear recurrence. If Q_m has no constant term, then $\deg W_m < d_m$ and $\{t_j\}$ does not satisfy a linear recurrence of degree $\leq n/2$. However, in this case, $W_m = x^{d_m} Q_m$ is a linear recurrence that holds for all k such that $d_m \leq k \leq n - 1$.

We note that $x^{d_i} \| \Delta_{i-1}$, $x^{d_i-1} \| \Delta_{i-2}$, and $d_i = r_{i-1} + d_{i-1}$. Hence in performing the division $\Delta_{i-2}/\Delta_{i-1}$ we need only use the first $r_{i-1} + 1$ terms of Δ_{i-2} and the same number of terms of Δ_{i-1}. This is sufficient to determine N_i completely.

Finally we note that it is only necessary to calculate Δ_i out to the term in x^{n-d_i}. This corresponds to the fact that $\Delta = xT$ is known only out to the term in x^n. To see this, consider the division of Δ_{i-2} by Δ_{i-1}. We need $r_{i-1} + 1$ terms of each. More terms of Δ_{i-2} are assumed known than of Δ_{i-1}. The number of terms of Δ_{i-1} that we have is $n - d_{i-1} - d_i + 1 = n - 2d_i + r_{i-1} + 1$. Since we
may suppose \(i \leq m \), this is at least \(r_{i-1} + 1 \) terms. Thus \(N_i \) may be computed exactly. Clearly if we know \(\Delta_{i-2} \) out to the term in \(x^{n-d_{i-2}} \) and \(\Delta_{i-1} \) out to the term in \(x^{n-d_{i-1}} \), then once \(N_i \) is known as a polynomial in \(y \) of degree \(r_{i-1} \), we may calculate \(\Delta_i \) out to the term in \(x^{n-d_i} \).

Tables 1 and 2 give examples of the calculation for small \(n \) and \(F = GF(2) \). The unnecessary terms of \(\Delta_i \), i.e., those beyond \(x^{n-d_i} \), are given in parenthesis. In the first example \(n = 12, m = 3, d_3 = 3, d_4 = 7, d_m + d_{m+1} \leq n \), so there is no solution and the \(Q_i \) are not calculated. In the second example, the sequence satisfies the linear recurrence \(x^4 + x + 1 \).

Table 1

\[F = GF(2), \quad n = 12, \quad \{t_i\} = \{100101110111\} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(N_i)</th>
<th>(\Delta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0 (x + x^4 + x^6 + x^7 + x^8 + x^{10} + x^{11} + x^{12})</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(y) (x^3 + x^5 + x^6 + x^7 + x^9 + x^{10} + x^{11})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(y^2 + 1) (x^7(+)x^{12})</td>
<td></td>
</tr>
</tbody>
</table>

There is no linear recurrence of degree \(\leq 6 \).

Table 2

\[F = GF(2), \quad n = 8, \quad \{t_i\} = \{11101011\} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(N_i)</th>
<th>(\Delta_i)</th>
<th>(Q_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 (x + x^2 + x^3 + x^5 + x^7 + x^8)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(y + 1) (x^3 + x^4 + x^5 + x^6(+)x^8)</td>
<td>(y + 1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(y^2) (x^4 + x^5(+)x^6 + x^7 + x^8)</td>
<td>(y^3 + y^2 + 1)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(y) (x^7(+)x^8)</td>
<td>(y^4 + y^3 + 1)</td>
<td></td>
</tr>
</tbody>
</table>

The linear recurrence is \(x^4(y^4 + y^3 + 1) = x^4 + x + 1 \).

6. We now consider the system

\[
\sum_{j=0}^{s} t_{i+j} \lambda_j, \quad 0 \leq i \leq s - 1,
\]

of \(s \) linear equations in \(s + 1 \) unknowns. This system must have at least one non-trivial solution in \(F \). If we set

\[
\Lambda = \sum_{j=0}^{s} \lambda_j x^{s-j},
\]

then we can write \(\Lambda = x^r W \), where \(W \) is a polynomial with nonzero constant term,
and \(\deg W \leq s - r \). If (13) holds, then there is a polynomial \(V \) such that \(\deg V < s - r \) and \(X^{2s-r}TW - V \). Thus \(V/W \) is an approximation of \(T \) of degree \(s - r \).

Hence \(V/W = V_m/W_m \) for some \(m \) with \(d_m \leq s - r \) and \(d_m + d_{m+1} - 1 \geq 2s - r \), so that \(d_m \leq s < d_{m+1} \). Thus we see that our algorithm can be used to solve the system (13) for any positive integer \(s \).

Institute for Defense Analyses
Communications Research Division
Princeton, New Jersey 08540