Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Irregularities in the distribution of primes and twin primes


Author: Richard P. Brent
Journal: Math. Comp. 29 (1975), 43-56
MSC: Primary 10H15; Secondary 10-04
DOI: https://doi.org/10.1090/S0025-5718-1975-0369287-1
Corrigendum: Math. Comp. 30 (1976), 198.
MathSciNet review: 0369287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The maxima and minima of $ \langle L(x)\rangle - \pi (x),\langle R(x)\rangle - \pi (x)$, and $ \langle {L_2}(x)\rangle - {\pi _2}(x)$ in various intervals up to $ x = 8 \times {10^{10}}$ are tabulated. Here $ \pi (x)$ and $ {\pi _2}(x)$ are respectively the number of primes and twin primes not exceeding $ x,L(x)$ is the logarithmic integral, $ R(x)$ is Riemann's approximation to $ \pi (x)$, and $ {L_2}(x)$ is the Hardy-Littlewood approximation to $ {\pi _2}(x)$. The computation of the sum of inverses of twin primes less than $ 8 \times {10^{10}}$ gives a probable value $ 1.9021604 \pm 5 \times {10^{ - 7}}$ for Brun's constant.


References [Enhancements On Off] (What's this?)

  • [1] K. I. APPEL & J. B. ROSSER, Table for Functions of Primes, IDA-CRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp., v. 16, 1962, pp. 500-501.
  • [2] P. BILLINGSLEY, "Prime numbers and Brownian motion," Amer. Math. Monthly, v. 80, 1973, pp. 1099-1115. MR 0345144 (49:9883)
  • [3] J. BOHMAN, "On the number of primes less than a given limit," Nordisk Tidskr. Informationsbehandling (BIT), v. 12, 1972, pp. 576-577. MR 0321890 (48:255)
  • [4] J. BOHMAN, "Some computational results regarding the prime numbers below 2,000,000,000," Nordisk Tidskr. Informationsbehandling (BIT), v. 13, 1973, pp. 242-244; Errata, ibid., v. 14, 1974, p. 127. MR 0321852 (48:217)
  • [5] R. P. BRENT, "The first occurrence of large gaps between successive primes," Math. Comp., v. 27, 1973, pp. 959-963. MR 0330021 (48:8360)
  • [6] R. P. BRENT, "The distribution of small gaps between successive primes," Math. Comp., v. 28, 1974, pp. 315-324. MR 0330017 (48:8356)
  • [7] V. BRUN, "La série $ 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + \ldots $, où les dénominateurs sont 'nombres premiers jumeaux' est convergente ou finie," Bull. Sci. Math., v. 43, 1919, pp. 124-128.
  • [8] C.-E. FROBERG, "On the sum of inverses of primes and twin primes," Nordisk Tidskr. Informationsbehandling (BIT), v. 1, 1961, pp. 15-20. MR 0236123 (38:4421)
  • [9] G. H. HARDY & J. E. LITTLEWOOD, "Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes," Acta Math., v. 14, 1918, p. 127.
  • [10] A. E. INGHAM, The Distribution of Prime Numbers, Cambridge Tract, no. 30, Cambridge Univ. Press, New York, 1932. MR 1074573 (91f:11064)
  • [11] R. SHERMAN LEHMAN, "On the difference $ \pi (x) - {\operatorname{li}}(x)$," Acta Arith., v. 11, 1966, pp. 397-410. MR 34 #2546. MR 0202686 (34:2546)
  • [12] D. H. LEHMER, "On the exact number of primes less than a given limit," Illinois J. Math., v. 3, 1959, pp. 381-388. MR 21 #5613. MR 0106883 (21:5613)
  • [13] J. E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 263-266.
  • [14] D. C. MAPES, "Fast method for computing the number of primes less than a given limit," Math. Comp., v. 17, 1963, pp. 179-185. MR 0158508 (28:1731)
  • [15] O. MØLLER, "Quasi double-precision in floating point addition," Nordisk Tidskr. Informationsbehandling (BIT), v. 5, 1965, pp. 37-50; Comment, ibid., v. 5, 1965, pp. 251-255. MR 31 #5359. MR 0181130 (31:5359)
  • [16] J. B. ROSSER & L. SCHOENFELD, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 64-94; reviewed in RMT 40, Math. Comp., v. 17, 1963, pp. 307-308. MR 25 #1139. MR 0137689 (25:1139)
  • [17] E. S. SELMER, "A special summation method in the theory of prime numbers and its application to 'Brun's sum'," Nordisk Mat. Tidskr., v. 24, 1942, pp. 74-81. (Norwegian) MR 8, 316. MR 0018688 (8:316g)
  • [18] D. SHANKS, "Quadratic residues and the distribution of primes," Math. Tables Aids Comput., v. 13, 1959, pp. 272-284. MR 21 #7186. MR 0108470 (21:7186)
  • [19] D. SHANKS, UMT 39, Math. Comp., v. 17, 1963, p. 307.
  • [20] D. SHANKS & J. W. WRENCH, JR., "Brun's constant," Math Comp., v. 28, 1974, pp. 293-299; Corrigendum, ibid., v. 28, 1974, p. 1183. MR 0352022 (50:4510)
  • [21] S. SKEWES, "On the difference $ \pi (x) - {\operatorname{li}}(x)$. II," Proc. London Math. Soc. Ser. (3), v. 5, 1955, pp. 48-70. MR 16, 676. MR 0067145 (16:676c)
  • [22] I. M. VINOGRADOV, "A new estimate of the function $ \zeta (1 + it)$," Izv. Akad. Nauk SSSR Ser. Mat., v. 22, 1958, pp. 161-164. (Russian) MR 21 #2624. MR 0103861 (21:2624)
  • [23] S. WEINTRAUB, UMT 38, Math. Comp., v. 27, 1973, pp. 676-677.
  • [24] J. W. WRENCH, JR., "Evaluation of Artin's constant and the twin-prime constant," Math. Comp., v. 15, 1961, pp. 396-398. MR 23 #A1619. MR 0124305 (23:A1619)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10H15, 10-04

Retrieve articles in all journals with MSC: 10H15, 10-04


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0369287-1
Keywords: Prime, twin prime, Riemann's approximation, error bounds, Hardy-Littlewood conjecture, Brun's constant, logarithmic integral
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society