Irregularities in the distribution of primes and twin primes
Author:
Richard P. Brent
Journal:
Math. Comp. 29 (1975), 4356
MSC:
Primary 10H15; Secondary 1004
Corrigendum:
Math. Comp. 30 (1976), 198.
MathSciNet review:
0369287
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The maxima and minima of , and in various intervals up to are tabulated. Here and are respectively the number of primes and twin primes not exceeding is the logarithmic integral, is Riemann's approximation to , and is the HardyLittlewood approximation to . The computation of the sum of inverses of twin primes less than gives a probable value for Brun's constant.
 [1]
K. I. APPEL & J. B. ROSSER, Table for Functions of Primes, IDACRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp., v. 16, 1962, pp. 500501.
 [2]
Patrick
Billingsley, Prime numbers and Brownian motion, Amer. Math.
Monthly 80 (1973), 1099–1115. MR 0345144
(49 #9883)
 [3]
Jan
Bohman, On the number of primes less than a given limit,
Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972),
576–578. MR 0321890
(48 #255)
 [4]
Jan
Bohman, Some computational results regarding the prime numbers
below 2,000,000,000, Nordisk Tidskr. Informationsbehandling (BIT)
13 (1973), 242–244. MR 0321852
(48 #217)
 [5]
Richard
P. Brent, The first occurrence of large gaps
between successive primes, Math. Comp. 27 (1973), 959–963.
MR
0330021 (48 #8360), http://dx.doi.org/10.1090/S00255718197303300210
 [6]
Richard
P. Brent, The distribution of small gaps between
successive primes, Math. Comp. 28 (1974), 315–324. MR 0330017
(48 #8356), http://dx.doi.org/10.1090/S0025571819740330017X
 [7]
V. BRUN, "La série , où les dénominateurs sont 'nombres premiers jumeaux' est convergente ou finie," Bull. Sci. Math., v. 43, 1919, pp. 124128.
 [8]
CarlErik
Fröberg, On the prime zeta function, Nordisk Tidskr.
Informationsbehandling (BIT) 8 (1968), 187–202. MR 0236123
(38 #4421)
 [9]
G. H. HARDY & J. E. LITTLEWOOD, "Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes," Acta Math., v. 14, 1918, p. 127.
 [10]
A.
E. Ingham, The distribution of prime numbers, Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint
of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
(91f:11064)
 [11]
R.
Sherman Lehman, On the difference
𝜋(𝑥)𝑙𝑖(𝑥), Acta Arith.
11 (1966), 397–410. MR 0202686
(34 #2546)
 [12]
D.
H. Lehmer, On the exact number of primes less than a given
limit, Illinois J. Math. 3 (1959), 381–388. MR 0106883
(21 #5613)
 [13]
J. E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 263266.
 [14]
David
C. Mapes, Fast method for computing the number
of primes less than a given limit, Math.
Comp. 17 (1963),
179–185. MR 0158508
(28 #1731), http://dx.doi.org/10.1090/S00255718196301585088
 [15]
Ole
Møller, Quasi doubleprecision in floating point
addition, Nordisk Tidskr. InformationsBehandling 5
(1965), 37–50. MR 0181130
(31 #5359)
 [16]
J.
Barkley Rosser and Lowell
Schoenfeld, Approximate formulas for some functions of prime
numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
(25 #1139)
 [17]
Ernst
S. Selmer, A special summation method in the theory of prime
numbers and its application to “Brun’s sum.”, Norsk.
Mat. Tidsskr. 24 (1942), 74–81 (Norwegian). MR 0018688
(8,316g)
 [18]
Daniel
Shanks, Quadratic residues and the
distribution of primes, Math. Tables Aids
Comput. 13 (1959),
272–284. MR 0108470
(21 #7186), http://dx.doi.org/10.1090/S00255718195901084708
 [19]
D. SHANKS, UMT 39, Math. Comp., v. 17, 1963, p. 307.
 [20]
Daniel
Shanks and John
W. Wrench Jr., Brun’s constant, Math. Comp. 28 (1974), 293–299;
corrigenda, ibid. 28 (1974), 1183. MR 0352022
(50 #4510), http://dx.doi.org/10.1090/S0025571819740352022X
 [21]
S.
Skewes, On the difference
𝜋(𝑥)𝑙𝑖𝑥. II, Proc. London
Math. Soc. (3) 5 (1955), 48–70. MR 0067145
(16,676c)
 [22]
I.
M. Vinogradov, A new estimate of the function
𝜁(1+𝑖𝑡), Izv. Akad. Nauk SSSR. Ser. Mat.
22 (1958), 161–164 (Russian). MR 0103861
(21 #2624)
 [23]
S. WEINTRAUB, UMT 38, Math. Comp., v. 27, 1973, pp. 676677.
 [24]
John
W. Wrench Jr., Evaluation of Artin’s constant
and the twinprime constant, Math. Comp. 15 (1961), 396–398.
MR
0124305 (23 #A1619), http://dx.doi.org/10.1090/S00255718196101243050
 [1]
 K. I. APPEL & J. B. ROSSER, Table for Functions of Primes, IDACRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp., v. 16, 1962, pp. 500501.
 [2]
 P. BILLINGSLEY, "Prime numbers and Brownian motion," Amer. Math. Monthly, v. 80, 1973, pp. 10991115. MR 0345144 (49:9883)
 [3]
 J. BOHMAN, "On the number of primes less than a given limit," Nordisk Tidskr. Informationsbehandling (BIT), v. 12, 1972, pp. 576577. MR 0321890 (48:255)
 [4]
 J. BOHMAN, "Some computational results regarding the prime numbers below 2,000,000,000," Nordisk Tidskr. Informationsbehandling (BIT), v. 13, 1973, pp. 242244; Errata, ibid., v. 14, 1974, p. 127. MR 0321852 (48:217)
 [5]
 R. P. BRENT, "The first occurrence of large gaps between successive primes," Math. Comp., v. 27, 1973, pp. 959963. MR 0330021 (48:8360)
 [6]
 R. P. BRENT, "The distribution of small gaps between successive primes," Math. Comp., v. 28, 1974, pp. 315324. MR 0330017 (48:8356)
 [7]
 V. BRUN, "La série , où les dénominateurs sont 'nombres premiers jumeaux' est convergente ou finie," Bull. Sci. Math., v. 43, 1919, pp. 124128.
 [8]
 C.E. FROBERG, "On the sum of inverses of primes and twin primes," Nordisk Tidskr. Informationsbehandling (BIT), v. 1, 1961, pp. 1520. MR 0236123 (38:4421)
 [9]
 G. H. HARDY & J. E. LITTLEWOOD, "Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes," Acta Math., v. 14, 1918, p. 127.
 [10]
 A. E. INGHAM, The Distribution of Prime Numbers, Cambridge Tract, no. 30, Cambridge Univ. Press, New York, 1932. MR 1074573 (91f:11064)
 [11]
 R. SHERMAN LEHMAN, "On the difference ," Acta Arith., v. 11, 1966, pp. 397410. MR 34 #2546. MR 0202686 (34:2546)
 [12]
 D. H. LEHMER, "On the exact number of primes less than a given limit," Illinois J. Math., v. 3, 1959, pp. 381388. MR 21 #5613. MR 0106883 (21:5613)
 [13]
 J. E. LITTLEWOOD, "Sur la distribution des nombres premiers," Comptes Rendus, v. 158, 1914, pp. 263266.
 [14]
 D. C. MAPES, "Fast method for computing the number of primes less than a given limit," Math. Comp., v. 17, 1963, pp. 179185. MR 0158508 (28:1731)
 [15]
 O. MØLLER, "Quasi doubleprecision in floating point addition," Nordisk Tidskr. Informationsbehandling (BIT), v. 5, 1965, pp. 3750; Comment, ibid., v. 5, 1965, pp. 251255. MR 31 #5359. MR 0181130 (31:5359)
 [16]
 J. B. ROSSER & L. SCHOENFELD, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 6494; reviewed in RMT 40, Math. Comp., v. 17, 1963, pp. 307308. MR 25 #1139. MR 0137689 (25:1139)
 [17]
 E. S. SELMER, "A special summation method in the theory of prime numbers and its application to 'Brun's sum'," Nordisk Mat. Tidskr., v. 24, 1942, pp. 7481. (Norwegian) MR 8, 316. MR 0018688 (8:316g)
 [18]
 D. SHANKS, "Quadratic residues and the distribution of primes," Math. Tables Aids Comput., v. 13, 1959, pp. 272284. MR 21 #7186. MR 0108470 (21:7186)
 [19]
 D. SHANKS, UMT 39, Math. Comp., v. 17, 1963, p. 307.
 [20]
 D. SHANKS & J. W. WRENCH, JR., "Brun's constant," Math Comp., v. 28, 1974, pp. 293299; Corrigendum, ibid., v. 28, 1974, p. 1183. MR 0352022 (50:4510)
 [21]
 S. SKEWES, "On the difference . II," Proc. London Math. Soc. Ser. (3), v. 5, 1955, pp. 4870. MR 16, 676. MR 0067145 (16:676c)
 [22]
 I. M. VINOGRADOV, "A new estimate of the function ," Izv. Akad. Nauk SSSR Ser. Mat., v. 22, 1958, pp. 161164. (Russian) MR 21 #2624. MR 0103861 (21:2624)
 [23]
 S. WEINTRAUB, UMT 38, Math. Comp., v. 27, 1973, pp. 676677.
 [24]
 J. W. WRENCH, JR., "Evaluation of Artin's constant and the twinprime constant," Math. Comp., v. 15, 1961, pp. 396398. MR 23 #A1619. MR 0124305 (23:A1619)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10H15,
1004
Retrieve articles in all journals
with MSC:
10H15,
1004
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503692871
PII:
S 00255718(1975)03692871
Keywords:
Prime,
twin prime,
Riemann's approximation,
error bounds,
HardyLittlewood conjecture,
Brun's constant,
logarithmic integral
Article copyright:
© Copyright 1975 American Mathematical Society
