On complex quadratic fields wth class-number two

Author:
H. M. Stark

Journal:
Math. Comp. **29** (1975), 289-302

MSC:
Primary 12A25; Secondary 12A50

DOI:
https://doi.org/10.1090/S0025-5718-1975-0369313-X

MathSciNet review:
0369313

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the discriminant of a complex quadratic field of class-number . In a previous paper the author has effectively shown how to find all *d* with . In this paper, it is proved that, if , then .

**[1]**D. H. LEHMER, EMMA LEHMER & DANIEL SHANKS, "Integer sequences having prescribed quadratic character,"*Math. Comp.*, v. 24, 1970, pp. 433-451. MR**42**#5889. MR**0271006 (42:5889)****[2]**H. L. MONTGOMERY & P. J. WEINBERGER, "Notes on small class numbers,"*Acta Arith.*, v. 24, 1974, pp. 529-542. MR**0357373 (50:9841)****[3]**H. M. STARK, "A transcendence theorem for class-number problems. II,"*Ann. of Math.*(2), v. 96, 1972, pp. 174-209. MR**46**#8983. MR**0309878 (46:8983)****[4]**H. M. STARK, "On complex quadratic fields with class number equal to one,"*Trans. Amer. Math. Soc.*, v. 122, 1966, pp. 112-119. MR**33**#4043. MR**0195845 (33:4043)**

Retrieve articles in *Mathematics of Computation*
with MSC:
12A25,
12A50

Retrieve articles in all journals with MSC: 12A25, 12A50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0369313-X

Keywords:
Class-number,
quadratic field,
binary quadratic forms,
zeta functions

Article copyright:
© Copyright 1975
American Mathematical Society