Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$

Authors: J. Barkley Rosser and Lowell Schoenfeld
Journal: Math. Comp. 29 (1975), 243-269
MSC: Primary 10H05
MathSciNet review: 0457373
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors demonstrate a wider zero-free region for the Riemann zeta function than has been given before. They give improved methods for using this and a recent determination that the first 3,502,500 zeros lie on the critical line to develop better bounds for functions of primes.

References [Enhancements On Off] (What's this?)

  • 1. Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
  • 2. KENNETH I. APPEL & J. BARKLEY ROSSER, Table for Estimating Functions of Primes, Communications Research Division Technical Report No. 4, Institute for Defense Analyses, Princeton, N. J., 1961.
  • [H] H. M. Edwards, Riemann’s zeta function, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 58. MR 0466039
  • 3. Steven H. French, Trigonometric polynomials in prime number theory, Illinois J. Math. 10 (1966), 240–248. MR 0214555
  • [A] A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
  • [E] LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols., Teubner, Leipzig, 1909; reprint, Chelsea, New York, 1953.
  • [R] R. Sherman Lehman, On the difference 𝜋(𝑥)-𝑙𝑖(𝑥), Acta Arith. 11 (1966), 397–410. MR 0202686
  • [R] R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 0258768
  • [D] D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 0086082
  • [D] D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102–108. MR 0086083
  • 4. NBS #55, see Abramowitz and Stegun of this Bibliography.
  • 5. BARKLEY ROSSER, "The n-th prime is greater than $ n \log n$," Proc. London Math. Soc. (2), v. 45, 1939, pp. 21-44.
  • 6. Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 0003018
  • [J] J. Barkley Rosser, Explicit remainder terms for some asymptotic series, J. Rational Mech. Anal. 4 (1955), 595–626. MR 0072969
  • [J] J. Barkley Rosser, A Runge-Kutta for all seasons, SIAM Rev. 9 (1967), 417–452. MR 0219242
  • 7. R--S. See next entry.
  • [J] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
  • [J] J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function. (With discussion), Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR 0258245
  • [S] S. B. Stečkin, Certain extremal properties of positive trigonometric polynomials, Mat. Zametki 7 (1970), 411–422 (Russian). MR 0263755
  • [S] S. B. Stečkin, The zeros of the Riemann zeta-function, Mat. Zametki 8 (1970), 419–429 (Russian). MR 0280448
  • [E] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10H05

Retrieve articles in all journals with MSC: 10H05

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society